Recurrent neural networks (RNNs) provide a theoretical framework for understanding computation in biological neural circuits, yet classical results, such as Hopfield's model of associative memory, rely on symmetric connectivity that restricts network dynamics to gradient-like flows. In contrast, biological networks support rich time-dependent behaviour facilitated by their asymmetry. Here we introduce a general framework, which we term drift-diffusion matching, for training continuous-time RNNs to represent arbitrary stochastic dynamical systems within a low-dimensional latent subspace. Allowing asymmetric connectivity, we show that RNNs can faithfully embed the drift and diffusion of a given stochastic differential equation, including nonlinear and nonequilibrium dynamics such as chaotic attractors. As an application, we construct RNN realisations of stochastic systems that transiently explore various attractors through both input-driven switching and autonomous transitions driven by nonequilibrium currents, which we interpret as models of associative and sequential (episodic) memory. To elucidate how these dynamics are encoded in the network, we introduce decompositions of the RNN based on its asymmetric connectivity and its time-irreversibility. Our results extend attractor neural network theory beyond equilibrium, showing that asymmetric neural populations can implement a broad class of dynamical computations within low-dimensional manifolds, unifying ideas from associative memory, nonequilibrium statistical mechanics, and neural computation.
We consider a class of optimization problems on the space of probability measures motivated by the mean-field approach to studying neural networks. Such problems can be solved by constructing continuous-time gradient flows that converge to the minimizer of the energy function under consideration, and then implementing discrete-time algorithms that approximate the flow. In this work, we focus on the Fisher-Rao gradient flow and we construct an interacting particle system that approximates the flow as its mean-field limit. We discuss the connection between the energy function, the gradient flow and the particle system and explain different approaches to smoothing out the energy function with an appropriate kernel in a way that allows for the particle system to be well-defined. We provide a rigorous proof of the existence and uniqueness of thus obtained kernelized flows, as well as a propagation of chaos result that provides a theoretical justification for using the corresponding kernelized particle systems as approximation algorithms in entropic mean-field optimization.
Reliable uncertainty estimates are crucial for deploying pretrained models; yet, many strong methods for quantifying uncertainty require retraining, Monte Carlo sampling, or expensive second-order computations and may alter a frozen backbone's predictions. To address this, we introduce Gaussian Process Activations (GAPA), a post-hoc method that shifts Bayesian modeling from weights to activations. GAPA replaces standard nonlinearities with Gaussian-process activations whose posterior mean exactly matches the original activation, preserving the backbone's point predictions by construction while providing closed-form epistemic variances in activation space. To scale to modern architectures, we use a sparse variational inducing-point approximation over cached training activations, combined with local k-nearest-neighbor subset conditioning, enabling deterministic single-pass uncertainty propagation without sampling, backpropagation, or second-order information. Across regression, classification, image segmentation, and language modeling, GAPA matches or outperforms strong post-hoc baselines in calibration and out-of-distribution detection while remaining efficient at test time.
Inverse problems and inverse design in multiphase media, i.e., recovering or engineering microstructures to achieve target macroscopic responses, require operating on discrete-valued material fields, rendering the problem non-differentiable and incompatible with gradient-based methods. Existing approaches either relax to continuous approximations, compromising physical fidelity, or employ separate heavyweight models for forward and inverse tasks. We propose GenPANIS, a unified generative framework that preserves exact discrete microstructures while enabling gradient-based inference through continuous latent embeddings. The model learns a joint distribution over microstructures and PDE solutions, supporting bidirectional inference (forward prediction and inverse recovery) within a single architecture. The generative formulation enables training with unlabeled data, physics residuals, and minimal labeled pairs. A physics-aware decoder incorporating a differentiable coarse-grained PDE solver preserves governing equation structure, enabling extrapolation to varying boundary conditions and microstructural statistics. A learnable normalizing flow prior captures complex posterior structure for inverse problems. Demonstrated on Darcy flow and Helmholtz equations, GenPANIS maintains accuracy on challenging extrapolative scenarios - including unseen boundary conditions, volume fractions, and microstructural morphologies, with sparse, noisy observations. It outperforms state-of-the-art methods while using 10 - 100 times fewer parameters and providing principled uncertainty quantification.
We introduce ResearchGym, a benchmark and execution environment for evaluating AI agents on end-to-end research. To instantiate this, we repurpose five oral and spotlight papers from ICML, ICLR, and ACL. From each paper's repository, we preserve the datasets, evaluation harness, and baseline implementations but withhold the paper's proposed method. This results in five containerized task environments comprising 39 sub-tasks in total. Within each environment, agents must propose novel hypotheses, run experiments, and attempt to surpass strong human baselines on the paper's metrics. In a controlled evaluation of an agent powered by GPT-5, we observe a sharp capability--reliability gap. The agent improves over the provided baselines from the repository in just 1 of 15 evaluations (6.7%) by 11.5%, and completes only 26.5% of sub-tasks on average. We identify recurring long-horizon failure modes, including impatience, poor time and resource management, overconfidence in weak hypotheses, difficulty coordinating parallel experiments, and hard limits from context length. Yet in a single run, the agent surpasses the solution of an ICML 2025 Spotlight task, indicating that frontier agents can occasionally reach state-of-the-art performance, but do so unreliably. We additionally evaluate proprietary agent scaffolds including Claude Code (Opus-4.5) and Codex (GPT-5.2) which display a similar gap. ResearchGym provides infrastructure for systematic evaluation and analysis of autonomous agents on closed-loop research.
Reconciling the tension between inductive learning and deductive reasoning in first-order relational domains is a longstanding challenge in AI. We study the problem of answering queries in a first-order relational probabilistic logic through a joint effort of learning and reasoning, without ever constructing an explicit model. Traditional lifted inference assumes access to a complete model and exploits symmetry to evaluate probabilistic queries; however, learning such models from partial, noisy observations is intractable in general. We reconcile these two challenges through implicit learning to reason and first-order relational probabilistic inference techniques. More specifically, we merge incomplete first-order axioms with independently sampled, partially observed examples into a bounded-degree fragment of the sum-of-squares (SOS) hierarchy in polynomial time. Our algorithm performs two lifts simultaneously: (i) grounding-lift, where renaming-equivalent ground moments share one variable, collapsing the domain of individuals; and (ii) world-lift, where all pseudo-models (partial world assignments) are enforced in parallel, producing a global bound that holds across all worlds consistent with the learned constraints. These innovations yield the first polynomial-time framework that implicitly learns a first-order probabilistic logic and performs lifted inference over both individuals and worlds.
Current approaches to AI training treat reasoning as an emergent property of scale. We argue instead that robust reasoning emerges from linguistic self-reflection, itself internalized from high-quality social interaction. Drawing on Vygotskian developmental psychology, we advance three core positions centered on Introspection. First, we argue for the Social Genesis of the Private Mind: learning from conversational environments rises to prominence as a new way to make sense of the world; the friction of aligning with another agent, internal or not, refines and crystallizes the reasoning process. Second, we argue that dialogically scaffolded introspective experiences allow agents to engage in sense-making that decouples learning from immediate data streams, transforming raw environmental data into rich, learnable narratives. Finally, we contend that Dialogue Quality is the New Data Quality: the depth of an agent's private reasoning, and its efficiency regarding test-time compute, is determined by the diversity and rigor of the dialogues it has mastered. We conclude that optimizing these conversational scaffolds is the primary lever for the next generation of general intelligence.
Failures in large language models (LLMs) are often analyzed from a behavioral perspective, where incorrect outputs in factual question answering are commonly associated with missing knowledge. In this work, focusing on entity-based factual queries, we suggest that such a view may conflate different failure mechanisms, and propose an internal, mechanism-oriented perspective that separates Knowledge Existence from Behavior Expression. Under this formulation, hallucination and deception correspond to two qualitatively different failure modes that may appear similar at the output level but differ in their underlying mechanisms. To study this distinction, we construct a controlled environment for entity-centric factual questions in which knowledge is preserved while behavioral expression is selectively altered, enabling systematic analysis of four behavioral cases. We analyze these failure modes through representation separability, sparse interpretability, and inference-time activation steering.
Reasoning in Large Language Models (LLMs) often suffers from inefficient long chain-of-thought traces with redundant self-exploration and validation, which inflate computational costs and even degrade performance. Inspired by human reasoning patterns where people solve new problems by leveraging past related cases to constrain search spaces and reduce trial-and-error, we propose Precedent Informed Reasoning (PIR) transforming LRMs'reasoning paradigm from exhaustive self-exploration to guided learning from precedents. PIR addresses two key challenges: what precedents to adopt and how to utilize them. First, Adaptive Precedent Selection (APS) constructs, for each question and LRM, a compact set of precedents that are both semantically related and informative for the model. It ranks examples by a joint score with semantic similarity and model perplexity, then adapts the amount of precedents to maximize perplexity reduction. Second, Test-time Experience Internalization (TEI) is treated as the test-time learning on precedent-informed instruction, updating lightweight adapters to internalize solution patterns and use them as a prior during subsequent reasoning. Experiments across mathematical reasoning, scientific QA, and code generation demonstrate that PIR consistently shortens reasoning traces while maintaining or improving final accuracy across LLMs, yielding outstanding accuracy-efficiency trade-offs.
Current meta-learning methods are constrained to narrow task distributions with fixed feature and label spaces, limiting applicability. Moreover, the current meta-learning literature uses key terms like "universal" and "general-purpose" inconsistently and lacks precise definitions, hindering comparability. We introduce a theoretical framework for meta-learning which formally defines practical universality and introduces a distinction between algorithm-explicit and algorithm-implicit learning, providing a principled vocabulary for reasoning about universal meta-learning methods. Guided by this framework, we present TAIL, a transformer-based algorithm-implicit meta-learner that functions across tasks with varying domains, modalities, and label configurations. TAIL features three innovations over prior transformer-based meta-learners: random projections for cross-modal feature encoding, random injection label embeddings that extrapolate to larger label spaces, and efficient inline query processing. TAIL achieves state-of-the-art performance on standard few-shot benchmarks while generalizing to unseen domains. Unlike other meta-learning methods, it also generalizes to unseen modalities, solving text classification tasks despite training exclusively on images, handles tasks with up to 20$\times$ more classes than seen during training, and provides orders-of-magnitude computational savings over prior transformer-based approaches.