Emotion understanding includes basic tasks (e.g., sentiment/emotion classification) and advanced tasks (e.g., sarcasm/humor detection). Current methods rely on fixed-length CoT reasoning, failing to adapt to the varying complexity of emotions. We propose a task-adaptive reasoning framework that employs DeepSeek-R1 to generate variable-length reasoning chains for different emotion tasks. By combining fine-tuning with reinforcement learning, we design a composite reward function that balances four objectives: prediction accuracy, adaptive reasoning depth control, structural diversity in reasoning paths, and suppression of repetitive logic. This approach achieves dynamic context-sensitive inference while enabling LLMs to autonomously develop deep reasoning capabilities. Experimental results demonstrate consistent improvements in both Acc and F1 scores across four tasks: emotion, sentiment, humor, and sarcasm. Notably, peak enhancements reached 3.56% F1 (2.76% Acc) for basic tasks and 37.95% F1 (23.14% Acc) for advanced tasks. Our work bridges rigid CoT reasoning and emotional complexity through adaptive-depth analysis.
In this paper, we present a comprehensive and systematic analysis of vision-language models (VLMs) for disparate meme classification tasks. We introduced a novel approach that generates a VLM-based understanding of meme images and fine-tunes the LLMs on textual understanding of the embedded meme text for improving the performance. Our contributions are threefold: (1) Benchmarking VLMs with diverse prompting strategies purposely to each sub-task; (2) Evaluating LoRA fine-tuning across all VLM components to assess performance gains; and (3) Proposing a novel approach where detailed meme interpretations generated by VLMs are used to train smaller language models (LLMs), significantly improving classification. The strategy of combining VLMs with LLMs improved the baseline performance by 8.34%, 3.52% and 26.24% for sarcasm, offensive and sentiment classification, respectively. Our results reveal the strengths and limitations of VLMs and present a novel strategy for meme understanding.
As e-commerce competition intensifies, balancing creative content with conversion effectiveness becomes critical. Leveraging LLMs' language generation capabilities, we propose a framework that integrates prompt engineering, multi-objective fine-tuning, and post-processing to generate marketing copy that is both engaging and conversion-driven. Our fine-tuning method combines sentiment adjustment, diversity enhancement, and CTA embedding. Through offline evaluations and online A/B tests across categories, our approach achieves a 12.5 % increase in CTR and an 8.3 % increase in CVR while maintaining content novelty. This provides a practical solution for automated copy generation and suggests paths for future multimodal, real-time personalization.
In-context learning (ICL) is a crucial capability of current large language models (LLMs), where the selection of examples plays a key role in performance. While most existing approaches focus on selecting the most similar examples to the query, the impact of diversity in example selection remains underexplored. We systematically investigate the role of diversity in in-context example selection through experiments across a range of tasks, from sentiment classification to more challenging math and code problems. Experiments on Llama-3.1, Gemma-2, and Mistral-v0.3 families of models show that diversity-aware selection methods improve performance, particularly on complex tasks like math and code, and enhance robustness to out-of-distribution queries. To support these findings, we introduce a theoretical framework that explains the benefits of incorporating diversity in in-context example selection.
Most successful applications of deep learning involve similar training and test conditions. However, tasks such as biological sequence design involve searching for sequences that improve desirable properties beyond previously known values, which requires novel hypotheses that \emph{extrapolate} beyond training data. In these settings, extrapolation may be achieved by using random search methods such as Markov chain Monte Carlo (MCMC), which, given an initial state, sample local transformations to approximate a target density that rewards states with the desired properties. However, even with a well-designed proposal, MCMC may struggle to explore large structured state spaces efficiently. Rather than relying on stochastic search, it would be desirable to have a model that greedily optimizes the properties of interest, successfully extrapolating in as few steps as possible. We propose to learn such a model from the Markov chains resulting from MCMC search. Specifically, our approach uses selected states from Markov chains as a source of training data for an autoregressive model, which is then able to efficiently generate novel sequences that extrapolate along the sequence-level properties of interest. The proposed approach is validated on three problems: protein sequence design, text sentiment control, and text anonymization. We find that the autoregressive model can extrapolate as well or better than MCMC, but with the additional benefits of scalability and significantly higher sample efficiency.
Classifying customer feedback into distinct emotion categories is essential for understanding sentiment and improving customer experience. In this paper, we classify customer feedback in Spanish into three emotion categories--positive, neutral, and negative--using advanced NLP and ML techniques. Traditional methods translate feedback from widely spoken languages to less common ones, resulting in a loss of semantic integrity and contextual nuances inherent to the original language. To address this limitation, we propose a hybrid approach that combines TF-IDF with BERT embeddings, effectively transforming Spanish text into rich numerical representations that preserve the semantic depth of the original language by using a Custom Stacking Ensemble (CSE) approach. To evaluate emotion classification, we utilize a range of models, including Logistic Regression, KNN, Bagging classifier with LGBM, and AdaBoost. The CSE model combines these classifiers as base models and uses a one-vs-all Logistic Regression as the meta-model. Our experimental results demonstrate that CSE significantly outperforms the individual and BERT model, achieving a test accuracy of 93.3% on the native Spanish dataset--higher than the accuracy obtained from the translated version. These findings underscore the challenges of emotion classification in Spanish and highlight the advantages of combining vectorization techniques like TF-IDF with BERT for improved accuracy. Our results provide valuable insights for businesses seeking to leverage emotion classification to enhance customer feedback analysis and service improvements.
Political biases encoded by LLMs might have detrimental effects on downstream applications. Existing bias analysis methods rely on small-size intermediate tasks (questionnaire answering or political content generation) and rely on the LLMs themselves for analysis, thus propagating bias. We propose a new approach leveraging the observation that LLM sentiment predictions vary with the target entity in the same sentence. We define an entropy-based inconsistency metric to encode this prediction variability. We insert 1319 demographically and politically diverse politician names in 450 political sentences and predict target-oriented sentiment using seven models in six widely spoken languages. We observe inconsistencies in all tested combinations and aggregate them in a statistically robust analysis at different granularity levels. We observe positive and negative bias toward left and far-right politicians and positive correlations between politicians with similar alignment. Bias intensity is higher for Western languages than for others. Larger models exhibit stronger and more consistent biases and reduce discrepancies between similar languages. We partially mitigate LLM unreliability in target-oriented sentiment classification (TSC) by replacing politician names with fictional but plausible counterparts.
Citations are crucial in scientific research articles as they highlight the connection between the current study and prior work. However, this process is often time-consuming for researchers. In this study, we propose the SciRGC framework, which aims to automatically recommend citation articles and generate citation sentences for citation locations within articles. The framework addresses two key challenges in academic citation generation: 1) how to accurately identify the author's citation intent and find relevant citation papers, and 2) how to generate high-quality citation sentences that align with human preferences. We enhance citation recommendation accuracy in the citation article recommendation module by incorporating citation networks and sentiment intent, and generate reasoning-based citation sentences in the citation sentence generation module by using the original article abstract, local context, citation intent, and recommended articles as inputs. Additionally, we propose a new evaluation metric to fairly assess the quality of generated citation sentences. Through comparisons with baseline models and ablation experiments, the SciRGC framework not only improves the accuracy and relevance of citation recommendations but also ensures the appropriateness of the generated citation sentences in context, providing a valuable tool for interdisciplinary researchers.
Reinforcement Learning from Human Feedback (RLHF) is a widely used technique for aligning Large Language Models (LLMs) with human preferences, yet it often suffers from sparse reward signals, making effective credit assignment challenging. In typical setups, the reward model provides a single scalar score for an entire generated sequence, offering little insight into which token or span-level decisions were responsible for the outcome. To address this, we propose Shapley Credit Assignment Rewards (SCAR), a novel method that leverages Shapley values in cooperative game theory. SCAR distributes the total sequence-level reward among constituent tokens or text spans based on their principled marginal contributions. This creates dense reward signals, crucially, without necessitating the training of auxiliary critique models or recourse to fine-grained human annotations at intermediate generation stages. Unlike prior dense reward methods, SCAR offers a game-theoretic foundation for fair credit attribution. Theoretically, we demonstrate that SCAR preserves the original optimal policy, and empirically, across diverse tasks including sentiment control, text summarization, and instruction tuning, we show that SCAR converges significantly faster and achieves higher final reward scores compared to standard RLHF and attention-based dense reward baselines. Our findings suggest that SCAR provides a more effective and theoretically sound method for credit assignment in RLHF, leading to more efficient alignment of LLMs.
Aspect-Based Sentiment Analysis (ABSA) is a fundamental task in natural language processing, offering fine-grained insights into opinions expressed in text. While existing research has largely focused on resource-rich languages like English which leveraging large annotated datasets, pre-trained models, and language-specific tools. These resources are often unavailable for low-resource languages such as Bengali. The ABSA task in Bengali remains poorly explored and is further complicated by its unique linguistic characteristics and a lack of annotated data, pre-trained models, and optimized hyperparameters. To address these challenges, this research propose CrosGrpsABS, a novel hybrid framework that leverages bidirectional cross-attention between syntactic and semantic graphs to enhance aspect-level sentiment classification. The CrosGrpsABS combines transformerbased contextual embeddings with graph convolutional networks, built upon rule-based syntactic dependency parsing and semantic similarity computations. By employing bidirectional crossattention, the model effectively fuses local syntactic structure with global semantic context, resulting in improved sentiment classification performance across both low- and high-resource settings. We evaluate CrosGrpsABS on four low-resource Bengali ABSA datasets and the high-resource English SemEval 2014 Task 4 dataset. The CrosGrpsABS consistently outperforms existing approaches, achieving notable improvements, including a 0.93% F1-score increase for the Restaurant domain and a 1.06% gain for the Laptop domain in the SemEval 2014 Task 4 benchmark.