Task-specialized models form the backbone of agentic healthcare systems, enabling the agents to answer clinical queries across tasks such as disease diagnosis, localization, and report generation. Yet, for a given task, a single "best" model rarely exists. In practice, each task is better served by multiple competing specialist models where different models excel on different data samples. As a result, for any given query, agents must reliably select the right specialist model from a heterogeneous pool of tool candidates. To this end, we introduce ToolSelect, which adaptively learns model selection for tools by minimizing a population risk over sampled specialist tool candidates using a consistent surrogate of the task-conditional selection loss. Concretely, we propose an Attentive Neural Process-based selector conditioned on the query and per-model behavioral summaries to choose among the specialist models. Motivated by the absence of any established testbed, we, for the first time, introduce an agentic Chest X-ray environment equipped with a diverse suite of task-specialized models (17 disease detection, 19 report generation, 6 visual grounding, and 13 VQA) and develop ToolSelectBench, a benchmark of 1448 queries. Our results demonstrate that ToolSelect consistently outperforms 10 SOTA methods across four different task families.
Neurosim is a fast, real-time, high-performance library for simulating sensors such as dynamic vision sensors, RGB cameras, depth sensors, and inertial sensors. It can also simulate agile dynamics of multi-rotor vehicles in complex and dynamic environments. Neurosim can achieve frame rates as high as ~2700 FPS on a desktop GPU. Neurosim integrates with a ZeroMQ-based communication library called Cortex to facilitate seamless integration with machine learning and robotics workflows. Cortex provides a high-throughput, low-latency message-passing system for Python and C++ applications, with native support for NumPy arrays and PyTorch tensors. This paper discusses the design philosophy behind Neurosim and Cortex. It demonstrates how they can be used to (i) train neuromorphic perception and control algorithms, e.g., using self-supervised learning on time-synchronized multi-modal data, and (ii) test real-time implementations of these algorithms in closed-loop. Neurosim and Cortex are available at https://github.com/grasp-lyrl/neurosim .
Advanced Aerial Mobility (AAM) operations require strategic flight planning services that predict both spatial and temporal uncertainties to safely validate flight plans against hazards such as weather cells, restricted airspaces, and CNS disruption areas. Current uncertainty estimation methods for AAM vehicles rely on conservative linear models due to limited real-world performance data. This paper presents a novel Kalman Filter-based uncertainty propagation method that models AAM Flight Management System (FMS) architectures through sigmoid-blended measurement noise covariance. Unlike existing approaches with fixed uncertainty thresholds, our method continuously adapts the filter's measurement trust based on progress toward waypoints, enabling FMS correction behavior to emerge naturally. The approach scales proportionally with control inputs and is tunable to match specific aircraft characteristics or route conditions. We validate the method using real ADS-B data from general aviation aircraft divided into training and verification sets. Uncertainty propagation parameters were tuned on the training set, achieving 76% accuracy in predicting arrival times when compared against the verification dataset, demonstrating the method's effectiveness for strategic flight plan validation in AAM operations.
Multi-Agent Path Finding (MAPF) remains a fundamental challenge in robotics, where classical centralized approaches exhibit exponential growth in joint-state complexity as the number of agents increases. This paper investigates Quadratic Unconstrained Binary Optimization (QUBO) as a structurally scalable alternative for simultaneous multi-robot path planning. This approach is a robotics-oriented QUBO formulation incorporating BFS-based logical pre-processing (achieving over 95% variable reduction), adaptive penalty design for collision and constraint enforcement, and a time-windowed decomposition strategy that enables execution within current hardware limitations. An experimental evaluation in grid environments with up to four robots demonstrated near-optimal solutions in dense scenarios and favorable scaling behavior compared to sequential classical planning. These results establish a practical and reproducible baseline for future quantum and quantum-inspired multi-robot coordinations.
Autonomous control of double-Ackermann-steering robots is essential in agricultural applications, where robots must execute precise and complex maneuvers within a limited space. Classical methods, such as the Timed Elastic Band (TEB) planner, can address this problem, but they rely on parameter tuning, making them highly sensitive to changes in robot configuration or environment and impractical to deploy without constant recalibration. At the same time, end-to-end deep reinforcement learning (DRL) methods often fail due to unsuitable reward functions for non-holonomic constraints, resulting in sub-optimal policies and poor generalization. To address these challenges, this paper presents ManeuverNet, a DRL framework tailored for double-Ackermann systems, combining Soft Actor-Critic with CrossQ. Furthermore, ManeuverNet introduces four specifically designed reward functions to support maneuver learning. Unlike prior work, ManeuverNet does not depend on expert data or handcrafted guidance. We extensively evaluate ManeuverNet against both state-of-the-art DRL baselines and the TEB planner. Experimental results demonstrate that our framework substantially improves maneuverability and success rates, achieving more than a 40% gain over DRL baselines. Moreover, ManeuverNet effectively mitigates the strong parameter sensitivity observed in the TEB planner. In real-world trials, ManeuverNet achieved up to a 90% increase in maneuvering trajectory efficiency, highlighting its robustness and practical applicability.
We present ROSA -- Roundabout Optimized Speed Advisory -- a system that combines multi-agent trajectory prediction with coordinated speed guidance for multimodal, mixed traffic at roundabouts. Using a Transformer-based model, ROSA jointly predicts the future trajectories of vehicles and Vulnerable Road Users (VRUs) at roundabouts. Trained for single-step prediction and deployed autoregressively, it generates deterministic outputs, enabling actionable speed advisories. Incorporating motion dynamics, the model achieves high accuracy (ADE: 1.29m, FDE: 2.99m at a five-second prediction horizon), surpassing prior work. Adding route intention further improves performance (ADE: 1.10m, FDE: 2.36m), demonstrating the value of connected vehicle data. Based on predicted conflicts with VRUs and circulating vehicles, ROSA provides real-time, proactive speed advisories for approaching and entering the roundabout. Despite prediction uncertainty, ROSA significantly improves vehicle efficiency and safety, with positive effects even on perceived safety from a VRU perspective. The source code of this work is available under: github.com/urbanAIthi/ROSA.
Temporal knowledge graphs (TKGs) support reasoning over time-evolving facts, yet state-of-the-art models are often computationally heavy and costly to deploy. Existing compression and distillation techniques are largely designed for static graphs; directly applying them to temporal settings may overlook time-dependent interactions and lead to performance degradation. We propose an LLM-assisted distillation framework specifically designed for temporal knowledge graph reasoning. Beyond a conventional high-capacity temporal teacher, we incorporate a large language model as an auxiliary instructor to provide enriched supervision. The LLM supplies broad background knowledge and temporally informed signals, enabling a lightweight student to better model event dynamics without increasing inference-time complexity. Training is conducted by jointly optimizing supervised and distillation objectives, using a staged alignment strategy to progressively integrate guidance from both teachers. Extensive experiments on multiple public TKG benchmarks with diverse backbone architectures demonstrate that the proposed approach consistently improves link prediction performance over strong distillation baselines, while maintaining a compact and efficient student model. The results highlight the potential of large language models as effective teachers for transferring temporal reasoning capability to resource-efficient TKG systems.
Many real-world control problems, ranging from finance to robotics, evolve in continuous time with non-uniform, event-driven decisions. Standard discrete-time reinforcement learning (RL), based on fixed-step Bellman updates, struggles in this setting: as time gaps shrink, the $Q$-function collapses to the value function $V$, eliminating action ranking. Existing continuous-time methods reintroduce action information via an advantage-rate function $q$. However, they enforce optimality through complicated martingale losses or orthogonality constraints, which are sensitive to the choice of test processes. These approaches entangle $V$ and $q$ into a large, complex optimization problem that is difficult to train reliably. To address these limitations, we propose a novel decoupled continuous-time actor-critic algorithm with alternating updates: $q$ is learned from diffusion generators on $V$, and $V$ is updated via a Hamiltonian-based value flow that remains informative under infinitesimal time steps, where standard max/softmax backups fail. Theoretically, we prove rigorous convergence via new probabilistic arguments, sidestepping the challenge that generator-based Hamiltonians lack Bellman-style contraction under the sup-norm. Empirically, our method outperforms prior continuous-time and leading discrete-time baselines across challenging continuous-control benchmarks and a real-world trading task, achieving 21% profit over a single quarter$-$nearly doubling the second-best method.
Reinforcement learning (RL)-based biomechanical simulations have the potential to revolutionise HCI research and interaction design, but currently lack usability and interpretability. Using the Human Action Cycle as a design lens, we identify key limitations of biomechanical RL frameworks and develop MyoInteract, a novel framework for fast prototyping of biomechanical HCI tasks. MyoInteract allows designers to setup tasks, user models, and training parameters from an easy-to-use GUI within minutes. It trains and evaluates muscle-actuated simulated users within minutes, reducing training times by up to 98%. A workshop study with 12 interaction designers revealed that MyoInteract allowed novices in biomechanical RL to successfully setup, train, and assess goal-directed user movements within a single session. By transforming biomechanical RL from a days-long expert task into an accessible hour-long workflow, this work significantly lowers barriers to entry and accelerates iteration cycles in HCI biomechanics research.
News recommendation plays a critical role in online news platforms by helping users discover relevant content. Cross-domain news recommendation further requires inferring user's underlying information needs from heterogeneous signals that often extend beyond direct news consumption. A key challenge lies in moving beyond surface-level behaviors to capture deeper, reusable user interests while maintaining scalability in large-scale production systems. In this paper, we present a reinforcement learning framework that trains large language models to generate high-quality lists of interest-driven news search queries from cross-domain user signals. We formulate query-list generation as a policy optimization problem and employ GRPO with multiple reward signals. We systematically study two compute dimensions: inference-time sampling and model capacity, and empirically observe consistent improvements with increased compute that exhibit scaling-like behavior. Finally, we perform on-policy distillation to transfer the learned policy from a large, compute-intensive teacher to a compact student model suitable for scalable deployment. Extensive offline experiments, ablation studies and large-scale online A/B tests in a production news recommendation system demonstrate consistent gains in both interest modeling quality and downstream recommendation performance.