



High-Frequency Trading (HFT) is pivotal in cryptocurrency markets, demanding rapid decision-making. Social media platforms like Reddit offer valuable, yet underexplored, information for such high-frequency, short-term trading. This paper introduces \textbf{PulseReddit}, a novel dataset that is the first to align large-scale Reddit discussion data with high-frequency cryptocurrency market statistics for short-term trading analysis. We conduct an extensive empirical study using Large Language Model (LLM)-based Multi-Agent Systems (MAS) to investigate the impact of social sentiment from PulseReddit on trading performance. Our experiments conclude that MAS augmented with PulseReddit data achieve superior trading outcomes compared to traditional baselines, particularly in bull markets, and demonstrate robust adaptability across different market regimes. Furthermore, our research provides conclusive insights into the performance-efficiency trade-offs of different LLMs, detailing significant considerations for practical model selection in HFT applications. PulseReddit and our findings establish a foundation for advanced MAS research in HFT, demonstrating the tangible benefits of integrating social media.
Steering vectors are a lightweight method for controlling text properties by adding a learned bias to language model activations at inference time. So far, steering vectors have predominantly been evaluated in multiple-choice settings, while their effectiveness in free-form generation tasks remains understudied. Moving "Beyond Multiple Choice," we thoroughly evaluate the effectiveness of steering vectors in adaptively controlling topical focus, sentiment, toxicity, and readability in abstractive summaries of the NEWTS dataset. We find that steering effectively controls the targeted summary properties, but high steering strengths consistently degrade both intrinsic and extrinsic text quality. Compared to steering, prompting offers weaker control, while preserving text quality. Combining steering and prompting yields the strongest control over text properties and offers the most favorable efficacy-quality trade-off at moderate steering strengths. Our results underscore the practical trade-off between control strength and text quality preservation when applying steering vectors to free-form generation tasks.
User sentiment on social media reveals the underlying social trends, crises, and needs. Researchers have analyzed users' past messages to trace the evolution of sentiments and reconstruct sentiment dynamics. However, predicting the imminent sentiment of an ongoing event is rarely studied. In this paper, we address the problem of \textbf{sentiment forecasting} on social media to predict the user's future sentiment in response to the development of the event. We extract sentiment-related features to enhance the modeling skill and propose a multi-perspective role-playing framework to simulate the process of human response. Our preliminary results show significant improvement in sentiment forecasting on both microscopic and macroscopic levels.
Aspect-Based Sentiment Analysis (ABSA) offers granular insights into opinions but often suffers from the scarcity of diverse, labeled datasets that reflect real-world conversational nuances. This paper presents an approach for generating synthetic ABSA data using Large Language Models (LLMs) to address this gap. We detail the generation process aimed at producing data with consistent topic and sentiment distributions across multiple domains using GPT-4o. The quality and utility of the generated data were evaluated by assessing the performance of three state-of-the-art LLMs (Gemini 1.5 Pro, Claude 3.5 Sonnet, and DeepSeek-R1) on topic and sentiment classification tasks. Our results demonstrate the effectiveness of the synthetic data, revealing distinct performance trade-offs among the models: DeepSeekR1 showed higher precision, Gemini 1.5 Pro and Claude 3.5 Sonnet exhibited strong recall, and Gemini 1.5 Pro offered significantly faster inference. We conclude that LLM-based synthetic data generation is a viable and flexible method for creating valuable ABSA resources, facilitating research and model evaluation without reliance on limited or inaccessible real-world labeled data.




Large language models and vision-language models (which we jointly call LMs) have transformed NLP and CV, demonstrating remarkable potential across various fields. However, their capabilities in affective analysis (i.e. sentiment analysis and emotion detection) remain underexplored. This gap is largely due to the absence of comprehensive evaluation benchmarks, and the inherent complexity of affective analysis tasks. In this paper, we introduce MMAFFBen, the first extensive open-source benchmark for multilingual multimodal affective analysis. MMAFFBen encompasses text, image, and video modalities across 35 languages, covering four key affective analysis tasks: sentiment polarity, sentiment intensity, emotion classification, and emotion intensity. Moreover, we construct the MMAFFIn dataset for fine-tuning LMs on affective analysis tasks, and further develop MMAFFLM-3b and MMAFFLM-7b based on it. We evaluate various representative LMs, including GPT-4o-mini, providing a systematic comparison of their affective understanding capabilities. This project is available at https://github.com/lzw108/MMAFFBen.
This study introduces a novel conceptual framework distinguishing problem-seeking from problem-solving to clarify the unique features of human intelligence in contrast to AI. Problem-seeking refers to the embodied, emotionally grounded process by which humans identify and set goals, while problem-solving denotes the execution of strategies aimed at achieving such predefined objectives. The framework emphasizes that while AI excels at efficiency and optimization, it lacks the orientation derived from experiential grounding and the embodiment flexibility intrinsic to human cognition. To empirically explore this distinction, the research analyzes metadata from 157 YouTube videos discussing AI. Conducting a thematic analysis combining qualitative insights with keyword-based quantitative metrics, this mixed-methods approach uncovers recurring themes in public discourse, including privacy, job displacement, misinformation, optimism, and ethical concerns. The results reveal a dual sentiment: public fascination with AI's capabilities coexists with anxiety and skepticism about its societal implications. The discussion critiques the orthogonality thesis, which posits that intelligence is separable from goal content, and instead argues that human intelligence integrates goal-setting and goal-pursuit. It underscores the centrality of embodied cognition in human reasoning and highlights how AI's limitations come from its current reliance on computational processing. The study advocates for enhancing emotional and digital literacy to foster responsible AI engagement. It calls for reframing public discourse to recognize AI as a tool that augments -- rather than replaces -- human intelligence. By positioning problem seeking at the core of cognition and as a critical dimension of intelligence, this research offers new perspectives on ethically aligned and human-centered AI development.
Opinion mining plays a vital role in analysing user feedback and extracting insights from textual data. While most research focuses on sentiment polarity (e.g., positive, negative, neutral), fine-grained emotion classification in app reviews remains underexplored. This paper addresses this gap by identifying and addressing the challenges and limitations in fine-grained emotion analysis in the context of app reviews. Our study adapts Plutchik's emotion taxonomy to app reviews by developing a structured annotation framework and dataset. Through an iterative human annotation process, we define clear annotation guidelines and document key challenges in emotion classification. Additionally, we evaluate the feasibility of automating emotion annotation using large language models, assessing their cost-effectiveness and agreement with human-labelled data. Our findings reveal that while large language models significantly reduce manual effort and maintain substantial agreement with human annotators, full automation remains challenging due to the complexity of emotional interpretation. This work contributes to opinion mining by providing structured guidelines, an annotated dataset, and insights for developing automated pipelines to capture the complexity of emotions in app reviews.
Traditional sentiment analysis relies on surface-level linguistic patterns and retrospective data, limiting its ability to capture the psychological and contextual drivers of human sentiment. These limitations constrain its effectiveness in applications that require predictive insight, such as policy testing, narrative framing, and behavioral forecasting. We present a robust framework for sentiment simulation using generative AI agents embedded with psychologically rich profiles. Agents are instantiated from a nationally representative survey of 2,485 Filipino respondents, combining sociodemographic information with validated constructs of personality traits, values, beliefs, and socio-political attitudes. The framework includes three stages: (1) agent embodiment via categorical or contextualized encodings, (2) exposure to real-world political and economic scenarios, and (3) generation of sentiment ratings accompanied by explanatory rationales. Using Quadratic Weighted Accuracy (QWA), we evaluated alignment between agent-generated and human responses. Contextualized encoding achieved 92% alignment in replicating original survey responses. In sentiment simulation tasks, agents reached 81%--86% accuracy against ground truth sentiment, with contextualized profile encodings significantly outperforming categorical (p < 0.0001, Cohen's d = 0.70). Simulation results remained consistent across repeated trials (+/-0.2--0.5% SD) and resilient to variation in scenario framing (p = 0.9676, Cohen's d = 0.02). Our findings establish a scalable framework for sentiment modeling through psychographically grounded AI agents. This work signals a paradigm shift in sentiment analysis from retrospective classification to prospective and dynamic simulation grounded in psychology of sentiment formation.
In this paper, we address the task of targeted sentiment analysis (TSA), which involves two sub-tasks, i.e., identifying specific aspects from reviews and determining their corresponding sentiments. Aspect extraction forms the foundation for sentiment prediction, highlighting the critical dependency between these two tasks for effective cross-task knowledge transfer. While most existing studies adopt a multi-task learning paradigm to align task-specific features in the latent space, they predominantly rely on coarse-grained knowledge transfer. Such approaches lack fine-grained control over aspect-sentiment relationships, often assuming uniform sentiment polarity within related aspects. This oversimplification neglects contextual cues that differentiate sentiments, leading to negative transfer. To overcome these limitations, we propose FCKT, a fine-grained cross-task knowledge transfer framework tailored for TSA. By explicitly incorporating aspect-level information into sentiment prediction, FCKT achieves fine-grained knowledge transfer, effectively mitigating negative transfer and enhancing task performance. Experiments on three datasets, including comparisons with various baselines and large language models (LLMs), demonstrate the effectiveness of FCKT. The source code is available on https://github.com/cwei01/FCKT.
Emotion understanding includes basic tasks (e.g., sentiment/emotion classification) and advanced tasks (e.g., sarcasm/humor detection). Current methods rely on fixed-length CoT reasoning, failing to adapt to the varying complexity of emotions. We propose a task-adaptive reasoning framework that employs DeepSeek-R1 to generate variable-length reasoning chains for different emotion tasks. By combining fine-tuning with reinforcement learning, we design a composite reward function that balances four objectives: prediction accuracy, adaptive reasoning depth control, structural diversity in reasoning paths, and suppression of repetitive logic. This approach achieves dynamic context-sensitive inference while enabling LLMs to autonomously develop deep reasoning capabilities. Experimental results demonstrate consistent improvements in both Acc and F1 scores across four tasks: emotion, sentiment, humor, and sarcasm. Notably, peak enhancements reached 3.56% F1 (2.76% Acc) for basic tasks and 37.95% F1 (23.14% Acc) for advanced tasks. Our work bridges rigid CoT reasoning and emotional complexity through adaptive-depth analysis.