Abstract:Current video analytics approaches face a fundamental trade-off between flexibility and efficiency. End-to-end Vision Language Models (VLMs) often struggle with long-context processing and incur high computational costs, while neural-symbolic methods depend heavily on manual labeling and rigid rule design. In this paper, we introduce LazyVLM, a neuro-symbolic video analytics system that provides a user-friendly query interface similar to VLMs, while addressing their scalability limitation. LazyVLM enables users to effortlessly drop in video data and specify complex multi-frame video queries using a semi-structured text interface for video analytics. To address the scalability limitations of VLMs, LazyVLM decomposes multi-frame video queries into fine-grained operations and offloads the bulk of the processing to efficient relational query execution and vector similarity search. We demonstrate that LazyVLM provides a robust, efficient, and user-friendly solution for querying open-domain video data at scale.
Abstract:Autonomous agents that navigate Graphical User Interfaces (GUIs) to automate tasks like document editing and file management can greatly enhance computer workflows. While existing research focuses on online settings, desktop environments, critical for many professional and everyday tasks, remain underexplored due to data collection challenges and licensing issues. We introduce UI-Vision, the first comprehensive, license-permissive benchmark for offline, fine-grained evaluation of computer use agents in real-world desktop environments. Unlike online benchmarks, UI-Vision provides: (i) dense, high-quality annotations of human demonstrations, including bounding boxes, UI labels, and action trajectories (clicks, drags, and keyboard inputs) across 83 software applications, and (ii) three fine-to-coarse grained tasks-Element Grounding, Layout Grounding, and Action Prediction-with well-defined metrics to rigorously evaluate agents' performance in desktop environments. Our evaluation reveals critical limitations in state-of-the-art models like UI-TARS-72B, including issues with understanding professional software, spatial reasoning, and complex actions like drag-and-drop. These findings highlight the challenges in developing fully autonomous computer use agents. By releasing UI-Vision as open-source, we aim to advance the development of more capable agents for real-world desktop tasks.