Time series analysis comprises statistical methods for analyzing a sequence of data points collected over an interval of time to identify interesting patterns and trends.




This study proposes a novel portfolio optimization framework that integrates statistical social network analysis with time series forecasting and risk management. Using daily stock data from the S&P 500 (2020-2024), we construct dependency networks via Vector Autoregression (VAR) and Forecast Error Variance Decomposition (FEVD), transforming influence relationships into a cost-based network. Specifically, FEVD breaks down the VAR's forecast error variance to quantify how much each stock's shocks contribute to another's uncertainty information we invert to form influence-based edge weights in our network. By applying the Minimum Spanning Tree (MST) algorithm, we extract the core inter-stock structure and identify central stocks through degree centrality. A dynamic portfolio is constructed using the top-ranked stocks, with capital allocated based on Value at Risk (VaR). To refine stock selection, we incorporate forecasts from ARIMA and Neural Network Autoregressive (NNAR) models. Trading simulations over a one-year period demonstrate that the MST-based strategies outperform a buy-and-hold benchmark, with the tuned NNAR-enhanced strategy achieving a 63.74% return versus 18.00% for the benchmark. Our results highlight the potential of combining network structures, predictive modeling, and risk metrics to improve adaptive financial decision-making.




Leveraging visual priors from pre-trained text-to-image (T2I) generative models has shown success in dense prediction. However, dense prediction is inherently an image-to-image task, suggesting that image editing models, rather than T2I generative models, may be a more suitable foundation for fine-tuning. Motivated by this, we conduct a systematic analysis of the fine-tuning behaviors of both editors and generators for dense geometry estimation. Our findings show that editing models possess inherent structural priors, which enable them to converge more stably by ``refining" their innate features, and ultimately achieve higher performance than their generative counterparts. Based on these findings, we introduce \textbf{FE2E}, a framework that pioneeringly adapts an advanced editing model based on Diffusion Transformer (DiT) architecture for dense geometry prediction. Specifically, to tailor the editor for this deterministic task, we reformulate the editor's original flow matching loss into the ``consistent velocity" training objective. And we use logarithmic quantization to resolve the precision conflict between the editor's native BFloat16 format and the high precision demand of our tasks. Additionally, we leverage the DiT's global attention for a cost-free joint estimation of depth and normals in a single forward pass, enabling their supervisory signals to mutually enhance each other. Without scaling up the training data, FE2E achieves impressive performance improvements in zero-shot monocular depth and normal estimation across multiple datasets. Notably, it achieves over 35\% performance gains on the ETH3D dataset and outperforms the DepthAnything series, which is trained on 100$\times$ data. The project page can be accessed \href{https://amap-ml.github.io/FE2E/}{here}.
Monitoring cattle health and optimizing yield are key challenges faced by dairy farmers due to difficulties in tracking all animals on the farm. This work aims to showcase modern data-driven farming practices based on explainable machine learning(ML) methods that explain the activity and behaviour of dairy cattle (cows). Continuous data collection of 3-axis accelerometer sensors and usage of robust ML methodologies and algorithms, provide farmers and researchers with actionable information on cattle activity, allowing farmers to make informed decisions and incorporate sustainable practices. This study utilizes Bluetooth-based Internet of Things (IoT) devices and 4G networks for seamless data transmission, immediate analysis, inference generation, and explains the models performance with explainability frameworks. Special emphasis is put on the pre-processing of the accelerometers time series data, including the extraction of statistical characteristics, signal processing techniques, and lag-based features using the sliding window technique. Various hyperparameter-optimized ML models are evaluated across varying window lengths for activity classification. The k-nearest neighbour Classifier achieved the best performance, with AUC of mean 0.98 and standard deviation of 0.0026 on the training set and 0.99 on testing set). In order to ensure transparency, Explainable AI based frameworks such as SHAP is used to interpret feature importance that can be understood and used by practitioners. A detailed comparison of the important features, along with the stability analysis of selected features, supports development of explainable and practical ML models for sustainable livestock management.




This study proposes an anomaly detection method based on the Transformer architecture with integrated multiscale feature perception, aiming to address the limitations of temporal modeling and scale-aware feature representation in cloud service environments. The method first employs an improved Transformer module to perform temporal modeling on high-dimensional monitoring data, using a self-attention mechanism to capture long-range dependencies and contextual semantics. Then, a multiscale feature construction path is introduced to extract temporal features at different granularities through downsampling and parallel encoding. An attention-weighted fusion module is designed to dynamically adjust the contribution of each scale to the final decision, enhancing the model's robustness in anomaly pattern modeling. In the input modeling stage, standardized multidimensional time series are constructed, covering core signals such as CPU utilization, memory usage, and task scheduling states, while positional encoding is used to strengthen the model's temporal awareness. A systematic experimental setup is designed to evaluate performance, including comparative experiments and hyperparameter sensitivity analysis, focusing on the impact of optimizers, learning rates, anomaly ratios, and noise levels. Experimental results show that the proposed method outperforms mainstream baseline models in key metrics, including precision, recall, AUC, and F1-score, and maintains strong stability and detection performance under various perturbation conditions, demonstrating its superior capability in complex cloud environments.




The Deep Space Network (DSN) is NASA's largest network of antenna facilities that generate a large volume of multivariate time-series data. These facilities contain DSN antennas and transmitters that undergo degradation over long periods of time, which may cause costly disruptions to the data flow and threaten the earth-connection of dozens of spacecraft that rely on the Deep Space Network for their lifeline. The purpose of this study was to experiment with different methods that would be able to assist JPL engineers with directly pinpointing anomalies and equipment degradation through collected data, and continue conducting maintenance and operations of the DSN for future space missions around our universe. As such, we have researched various machine learning techniques that can fully reconstruct data through predictive analysis, and determine anomalous data entries within real-time datasets through statistical computations and thresholds. On top of the fully trained and tested machine learning models, we have also integrated the use of a reinforcement learning subsystem that classifies identified anomalies based on severity level and a Large Language Model that labels an explanation for each anomalous data entry, all of which can be improved and fine-tuned over time through human feedback/input. Specifically, for the DSN transmitters, we have also implemented a full data pipeline system that connects the data extraction, parsing, and processing workflow all together as there was no coherent program or script for performing these tasks before. Using this data pipeline system, we were able to then also connect the models trained from DSN antenna data, completing the data workflow for DSN anomaly detection. This was all wrapped around and further connected by an agentic AI system, where complex reasoning was utilized to determine the classifications and predictions of anomalous data.




Humor is a broad and complex form of communication that remains challenging for machines. Despite its broadness, most existing research on computational humor traditionally focused on modeling a specific type of humor. In this work, we wish to understand whether competence on one or more specific humor tasks confers any ability to transfer to novel, unseen types; in other words, is this fragmentation inevitable? This question is especially timely as new humor types continuously emerge in online and social media contexts (e.g., memes, anti-humor, AI fails). If Large Language Models (LLMs) are to keep up with this evolving landscape, they must be able to generalize across humor types by capturing deeper, transferable mechanisms. To investigate this, we conduct a series of transfer learning experiments across four datasets, representing different humor tasks. We train LLMs under varied diversity settings (1-3 datasets in training, testing on a novel task). Experiments reveal that models are capable of some transfer, and can reach up to 75% accuracy on unseen datasets; training on diverse sources improves transferability (1.88-4.05%) with minimal-to-no drop in in-domain performance. Further analysis suggests relations between humor types, with Dad Jokes surprisingly emerging as the best enabler of transfer (but is difficult to transfer to). We release data and code.
In recent years, the application of Large Language Models (LLMs) to time series forecasting (TSF) has garnered significant attention among researchers. This study presents a new frame of LLMs named CGF-LLM using GPT-2 combined with fuzzy time series (FTS) and causal graph to predict multivariate time series, marking the first such architecture in the literature. The key objective is to convert numerical time series into interpretable forms through the parallel application of fuzzification and causal analysis, enabling both semantic understanding and structural insight as input for the pretrained GPT-2 model. The resulting textual representation offers a more interpretable view of the complex dynamics underlying the original time series. The reported results confirm the effectiveness of our proposed LLM-based time series forecasting model, as demonstrated across four different multivariate time series datasets. This initiative paves promising future directions in the domain of TSF using LLMs based on FTS.
Forecasting stock and cryptocurrency prices is challenging due to high volatility and non-stationarity, influenced by factors like economic changes and market sentiment. Previous research shows that Echo State Networks (ESNs) can effectively model short-term stock market movements, capturing nonlinear patterns in dynamic data. To the best of our knowledge, this work is among the first to explore ESNs for cryptocurrency forecasting, especially during extreme volatility. We also conduct chaos analysis through the Lyapunov exponent in chaotic periods and show that our approach outperforms existing machine learning methods by a significant margin. Our findings are consistent with the Lyapunov exponent analysis, showing that ESNs are robust during chaotic periods and excel under high chaos compared to Boosting and Na\"ive methods.
Understanding temporal patterns in online search behavior is crucial for real-time marketing and trend forecasting. Google Trends offers a rich proxy for public interest, yet the high dimensionality and noise of its time-series data present challenges for effective clustering. This study evaluates three unsupervised clustering approaches, Symbolic Aggregate approXimation (SAX), enhanced SAX (eSAX), and Topological Data Analysis (TDA), applied to 20 Google Trends keywords representing major consumer categories. Our results show that while SAX and eSAX offer fast and interpretable clustering for stable time series, they struggle with volatility and complexity, often producing ambiguous ``catch-all'' clusters. TDA, by contrast, captures global structural features through persistent homology and achieves more balanced and meaningful groupings. We conclude with practical guidance for using symbolic and topological methods in consumer analytics and suggest that hybrid approaches combining both perspectives hold strong potential for future applications.




Detecting, analyzing, and predicting power outages is crucial for grid risk assessment and disaster mitigation. Numerous outages occur each year, exacerbated by extreme weather events such as hurricanes. Existing outage data are typically reported at the county level, limiting their spatial resolution and making it difficult to capture localized patterns. However, it offers excellent temporal granularity. In contrast, nighttime light satellite image data provides significantly higher spatial resolution and enables a more comprehensive spatial depiction of outages, enhancing the accuracy of assessing the geographic extent and severity of power loss after disaster events. However, these satellite data are only available on a daily basis. Integrating spatiotemporal visual and time-series data sources into a unified knowledge representation can substantially improve power outage detection, analysis, and predictive reasoning. In this paper, we propose GeoOutageKG, a multimodal knowledge graph that integrates diverse data sources, including nighttime light satellite image data, high-resolution spatiotemporal power outage maps, and county-level timeseries outage reports in the U.S. We describe our method for constructing GeoOutageKG by aligning source data with a developed ontology, GeoOutageOnto. Currently, GeoOutageKG includes over 10.6 million individual outage records spanning from 2014 to 2024, 300,000 NTL images spanning from 2012 to 2024, and 15,000 outage maps. GeoOutageKG is a novel, modular and reusable semantic resource that enables robust multimodal data integration. We demonstrate its use through multiresolution analysis of geospatiotemporal power outages.