



Digital pathology involves converting physical tissue slides into high-resolution Whole Slide Images (WSIs), which pathologists analyze for disease-affected tissues. However, large histology slides with numerous microscopic fields pose challenges for visual search. To aid pathologists, Computer Aided Diagnosis (CAD) systems offer visual assistance in efficiently examining WSIs and identifying diagnostically relevant regions. This paper presents a novel histopathological image analysis method employing Weakly Supervised Semantic Segmentation (WSSS) based on Capsule Networks, the first such application. The proposed model is evaluated using the Atlas of Digital Pathology (ADP) dataset and its performance is compared with other histopathological semantic segmentation methodologies. The findings underscore the potential of Capsule Networks in enhancing the precision and efficiency of histopathological image analysis. Experimental results show that the proposed model outperforms traditional methods in terms of accuracy and the mean Intersection-over-Union (mIoU) metric.




Annotating lots of 3D medical images for training segmentation models is time-consuming. The goal of weakly supervised semantic segmentation is to train segmentation models without using any ground truth segmentation masks. Our work addresses the case where only image-level categorical labels, indicating the presence or absence of a particular region of interest (such as tumours or lesions), are available. Most existing methods rely on class activation mapping (CAM). We propose a novel approach, ToNNO, which is based on the Tomographic reconstruction of a Neural Network's Output. Our technique extracts stacks of slices with different angles from the input 3D volume, feeds these slices to a 2D encoder, and applies the inverse Radon transform in order to reconstruct a 3D heatmap of the encoder's predictions. This generic method allows to perform dense prediction tasks on 3D volumes using any 2D image encoder. We apply it to weakly supervised medical image segmentation by training the 2D encoder to output high values for slices containing the regions of interest. We test it on four large scale medical image datasets and outperform 2D CAM methods. We then extend ToNNO by combining tomographic reconstruction with CAM methods, proposing Averaged CAM and Tomographic CAM, which obtain even better results.




Attributed to the frequent coupling of co-occurring objects and the limited supervision from image-level labels, the challenging co-occurrence problem is widely present and leads to false activation of objects in weakly supervised semantic segmentation (WSSS). In this work, we devise a 'Separate and Conquer' scheme SeCo to tackle this issue from dimensions of image space and feature space. In the image space, we propose to 'separate' the co-occurring objects with image decomposition by subdividing images into patches. Importantly, we assign each patch a category tag from Class Activation Maps (CAMs), which spatially helps remove the co-context bias and guide the subsequent representation. In the feature space, we propose to 'conquer' the false activation by enhancing semantic representation with multi-granularity knowledge contrast. To this end, a dual-teacher-single-student architecture is designed and tag-guided contrast is conducted to guarantee the correctness of knowledge and further facilitate the discrepancy among co-occurring objects. We streamline the multi-staged WSSS pipeline end-to-end and tackle co-occurrence without external supervision. Extensive experiments are conducted, validating the efficiency of our method tackling co-occurrence and the superiority over previous single-staged and even multi-staged competitors on PASCAL VOC and MS COCO. Code will be available at https://github.com/zwyang6/SeCo.git.




Scribble-based weakly supervised segmentation techniques offer comparable performance to fully supervised methods while significantly reducing annotation costs, making them an appealing alternative. Existing methods often rely on auxiliary tasks to enforce semantic consistency and use hard pseudo labels for supervision. However, these methods often overlook the unique requirements of models trained with sparse annotations. Since the model must predict pixel-wise segmentation maps with limited annotations, the ability to handle varying levels of annotation richness is critical. In this paper, we adopt the principle of `from few to more' and propose MaCo, a weakly supervised framework designed for medical image segmentation. MaCo employs masked context modeling (MCM) and continuous pseudo labels (CPL). MCM uses an attention-based masking strategy to disrupt the input image, compelling the model's predictions to remain consistent with those of the original image. CPL converts scribble annotations into continuous pixel-wise labels by applying an exponential decay function to distance maps, resulting in continuous maps that represent the confidence of each pixel belonging to a specific category, rather than using hard pseudo labels. We evaluate MaCo against other weakly supervised methods using three public datasets. The results indicate that MaCo outperforms competing methods across all datasets, setting a new record in weakly supervised medical image segmentation.
Weakly-Supervised Semantic Segmentation (WSSS) aims to train segmentation models using training image data with only image-level supervision. Since precise pixel-level annotations are not accessible, existing methods typically focus on producing pseudo masks for training segmentation models by refining CAM-like heatmaps. However, the produced heatmaps may only capture discriminative image regions of target object categories or the associated co-occurring backgrounds. To address the issues, we propose a Semantic Prompt Learning for WSSS (SemPLeS) framework, which learns to effectively prompt the CLIP space to enhance the semantic alignment between the segmented regions and the target object categories. More specifically, we propose Contrastive Prompt Learning and Class-associated Semantic Refinement to learn the prompts that adequately describe and suppress the image backgrounds associated with each target object category. In this way, our proposed framework is able to perform better semantic matching between object regions and the associated text labels, resulting in desired pseudo masks for training the segmentation model. The proposed SemPLeS framework achieves SOTA performance on the standard WSSS benchmarks, PASCAL VOC and MS COCO, and demonstrated interpretability with the semantic visualization of our learned prompts. The codes will be released.




The image-level label has prevailed in weakly supervised semantic segmentation tasks due to its easy availability. Since image-level labels can only indicate the existence or absence of specific categories of objects, visualization-based techniques have been widely adopted to provide object location clues. Considering class activation maps (CAMs) can only locate the most discriminative part of objects, recent approaches usually adopt an expansion strategy to enlarge the activation area for more integral object localization. However, without proper constraints, the expanded activation will easily intrude into the background region. In this paper, we propose spatial structure constraints (SSC) for weakly supervised semantic segmentation to alleviate the unwanted object over-activation of attention expansion. Specifically, we propose a CAM-driven reconstruction module to directly reconstruct the input image from deep CAM features, which constrains the diffusion of last-layer object attention by preserving the coarse spatial structure of the image content. Moreover, we propose an activation self-modulation module to refine CAMs with finer spatial structure details by enhancing regional consistency. Without external saliency models to provide background clues, our approach achieves 72.7\% and 47.0\% mIoU on the PASCAL VOC 2012 and COCO datasets, respectively, demonstrating the superiority of our proposed approach.




Image-level weakly supervised semantic segmentation has received increasing attention due to its low annotation cost. Existing methods mainly rely on Class Activation Mapping (CAM) to obtain pseudo-labels for training semantic segmentation models. In this work, we are the first to demonstrate that long-tailed distribution in training data can cause the CAM calculated through classifier weights over-activated for head classes and under-activated for tail classes due to the shared features among head- and tail- classes. This degrades pseudo-label quality and further influences final semantic segmentation performance. To address this issue, we propose a Shared Feature Calibration (SFC) method for CAM generation. Specifically, we leverage the class prototypes that carry positive shared features and propose a Multi-Scaled Distribution-Weighted (MSDW) consistency loss for narrowing the gap between the CAMs generated through classifier weights and class prototypes during training. The MSDW loss counterbalances over-activation and under-activation by calibrating the shared features in head-/tail-class classifier weights. Experimental results show that our SFC significantly improves CAM boundaries and achieves new state-of-the-art performances. The project is available at https://github.com/Barrett-python/SFC.
Surgical scenes convey crucial information about the quality of surgery. Pixel-wise localization of tools and anatomical structures is the first task towards deeper surgical analysis for microscopic or endoscopic surgical views. This is typically done via fully-supervised methods which are annotation greedy and in several cases, demanding medical expertise. Considering the profusion of surgical videos obtained through standardized surgical workflows, we propose an annotation-efficient framework for the semantic segmentation of surgical scenes. We employ image-based self-supervised object discovery to identify the most salient tools and anatomical structures in surgical videos. These proposals are further refined within a minimally supervised fine-tuning step. Our unsupervised setup reinforced with only 36 annotation labels indicates comparable localization performance with fully-supervised segmentation models. Further, leveraging surgical phase labels as weak labels can better guide model attention towards surgical tools, leading to $\sim 2\%$ improvement in tool localization. Extensive ablation studies on the CaDIS dataset validate the effectiveness of our proposed solution in discovering relevant surgical objects with minimal or no supervision.




In recent years, weakly supervised semantic segmentation using image-level labels as supervision has received significant attention in the field of computer vision. Most existing methods have addressed the challenges arising from the lack of spatial information in these labels by focusing on facilitating supervised learning through the generation of pseudo-labels from class activation maps (CAMs). Due to the localized pattern detection of Convolutional Neural Networks (CNNs), CAMs often emphasize only the most discriminative parts of an object, making it challenging to accurately distinguish foreground objects from each other and the background. Recent studies have shown that Vision Transformer (ViT) features, due to their global view, are more effective in capturing the scene layout than CNNs. However, the use of hierarchical ViTs has not been extensively explored in this field. This work explores the use of Swin Transformer by proposing "SWTformer" to enhance the accuracy of the initial seed CAMs by bringing local and global views together. SWTformer-V1 generates class probabilities and CAMs using only the patch tokens as features. SWTformer-V2 incorporates a multi-scale feature fusion mechanism to extract additional information and utilizes a background-aware mechanism to generate more accurate localization maps with improved cross-object discrimination. Based on experiments on the PascalVOC 2012 dataset, SWTformer-V1 achieves a 0.98% mAP higher localization accuracy, outperforming state-of-the-art models. It also yields comparable performance by 0.82% mIoU on average higher than other methods in generating initial localization maps, depending only on the classification network. SWTformer-V2 further improves the accuracy of the generated seed CAMs by 5.32% mIoU, further proving the effectiveness of the local-to-global view provided by the Swin transformer.
Most Camouflaged Object Detection (COD) methods heavily rely on mask annotations, which are time-consuming and labor-intensive to acquire. Existing weakly-supervised COD approaches exhibit significantly inferior performance compared to fully-supervised methods and struggle to simultaneously support all the existing types of camouflaged object labels, including scribbles, bounding boxes, and points. Even for Segment Anything Model (SAM), it is still problematic to handle the weakly-supervised COD and it typically encounters challenges of prompt compatibility of the scribble labels, extreme response, semantically erroneous response, and unstable feature representations, producing unsatisfactory results in camouflaged scenes. To mitigate these issues, we propose a unified COD framework in this paper, termed SAM-COD, which is capable of supporting arbitrary weakly-supervised labels. Our SAM-COD employs a prompt adapter to handle scribbles as prompts based on SAM. Meanwhile, we introduce response filter and semantic matcher modules to improve the quality of the masks obtained by SAM under COD prompts. To alleviate the negative impacts of inaccurate mask predictions, a new strategy of prompt-adaptive knowledge distillation is utilized to ensure a reliable feature representation. To validate the effectiveness of our approach, we have conducted extensive empirical experiments on three mainstream COD benchmarks. The results demonstrate the superiority of our method against state-of-the-art weakly-supervised and even fully-supervised methods.