Information extraction is the process of automatically extracting structured information from unstructured text data.
Most users agree to online privacy policies without reading or understanding them, even though these documents govern how personal data is collected, shared, and monetized. Privacy policies are typically long, legally complex, and difficult for non-experts to interpret. This paper presents the Smart Privacy Policy Assistant, an LLM-powered system that automatically ingests privacy policies, extracts and categorizes key clauses, assigns human-interpretable risk levels, and generates clear, concise explanations. The system is designed for real-time use through browser extensions or mobile interfaces, surfacing contextual warnings before users disclose sensitive information or grant risky permissions. We describe the end-to-end pipeline, including policy ingestion, clause categorization, risk scoring, and explanation generation, and propose an evaluation framework based on clause-level accuracy, policy-level risk agreement, and user comprehension.
Despite significant progress, multimodal large language models continue to struggle with visual mathematical problem solving. Some recent works recognize that visual perception is a bottleneck in visual mathematical reasoning, but their solutions are limited to improving the extraction and interpretation of visual inputs. Notably, they all ignore the key issue of whether the extracted visual cues are faithfully integrated and properly utilized in subsequent reasoning. Motivated by this, we present CogFlow, a novel cognitive-inspired three-stage framework that incorporates a knowledge internalization stage, explicitly simulating the hierarchical flow of human reasoning: perception$\Rightarrow$internalization$\Rightarrow$reasoning. Inline with this hierarchical flow, we holistically enhance all its stages. We devise Synergistic Visual Rewards to boost perception capabilities in parametric and semantic spaces, jointly improving visual information extraction from symbols and diagrams. To guarantee faithful integration of extracted visual cues into subsequent reasoning, we introduce a Knowledge Internalization Reward model in the internalization stage, bridging perception and reasoning. Moreover, we design a Visual-Gated Policy Optimization algorithm to further enforce the reasoning is grounded with the visual knowledge, preventing models seeking shortcuts that appear coherent but are visually ungrounded reasoning chains. Moreover, we contribute a new dataset MathCog for model training, which contains samples with over 120K high-quality perception-reasoning aligned annotations. Comprehensive experiments and analysis on commonly used visual mathematical reasoning benchmarks validate the superiority of the proposed CogFlow.
Self-Supervised Learning (SSL) has emerged as a key technique in machine learning, tackling challenges such as limited labeled data, high annotation costs, and variable wireless channel conditions. It is essential for developing Channel Foundation Models (CFMs), which extract latent features from channel state information (CSI) and adapt to different wireless settings. Yet, existing CFMs have notable drawbacks: heavy reliance on scenario-specific data hinders generalization, they focus on single/dual tasks, and lack zero-shot learning ability. In this paper, we propose CSI-MAE, a generalized CFM leveraging masked autoencoder for cross-scenario generalization. Trained on 3GPP channel model datasets, it integrates sensing and communication via CSI perception and generation, proven effective across diverse tasks. A lightweight decoder finetuning strategy cuts training costs while maintaining competitive performance. Under this approach, CSI-MAE matches or surpasses supervised models. With full-parameter finetuning, it achieves the state-of-the-art performance. Its exceptional zero-shot transferability also rivals supervised techniques in cross-scenario applications, driving wireless communication innovation.
Claims documents are fundamental to healthcare and insurance operations, serving as the basis for reimbursement, auditing, and compliance. However, these documents are typically not born digital; they often exist as scanned PDFs or photographs captured under uncontrolled conditions. Consequently, they exhibit significant content heterogeneity, ranging from typed invoices to handwritten medical reports, as well as linguistic diversity. This challenge is exemplified by operations at Fullerton Health, which handles tens of millions of claims annually across nine markets, including Singapore, the Philippines, Indonesia, Malaysia, Mainland China, Hong Kong, Vietnam, Papua New Guinea, and Cambodia. Such variability, coupled with inconsistent image quality and diverse layouts, poses a significant obstacle to automated parsing and structured information extraction. This paper presents a robust multi-stage pipeline that integrates the multilingual optical character recognition (OCR) engine PaddleOCR, a traditional Logistic Regression classifier, and a compact Vision-Language Model (VLM), Qwen 2.5-VL-7B, to achieve efficient and accurate field extraction from large-scale claims data. The proposed system achieves a document-type classification accuracy of over 95 percent and a field-level extraction accuracy of approximately 87 percent, while maintaining an average processing latency of under 2 seconds per document. Compared to manual processing, which typically requires around 10 minutes per claim, our system delivers a 300x improvement in efficiency. These results demonstrate that combining traditional machine learning models with modern VLMs enables production-grade accuracy and speed for real-world automation. The solution has been successfully deployed in our mobile application and is currently processing tens of thousands of claims weekly from Vietnam and Singapore.
Distributed radar sensors enable robust human activity recognition. However, scaling the number of coordinated nodes introduces challenges in feature extraction from large datasets, and transparent data fusion. We propose an end-to-end framework that operates directly on raw radar data. Each radar node employs a lightweight 2D Convolutional Neural Network (CNN) to extract local features. A self-attention fusion block then models inter-node relationships and performs adaptive information fusion. Local feature extraction reduces the input dimensionality by up to 480x. This significantly lowers communication overhead and latency. The attention mechanism provides inherent interpretability by quantifying the contribution of each radar node. A hybrid supervised contrastive loss further improves feature separability, especially for fine-grained and imbalanced activity classes. Experiments on real-world distributed Ultra Wide Band (UWB) radar data demonstrate that the proposed method reduces model complexity by 70.8\%, while achieving higher average accuracy than baseline approaches. Overall, the framework enables transparent, efficient, and low-overhead distributed radar sensing.
Recent deepfake detection methods have increasingly explored frequency domain representations to reveal manipulation artifacts that are difficult to detect in the spatial domain. However, most existing approaches rely primarily on spectral magnitude, implicitly under exploring the role of phase information. In this work, we propose Phase4DFD, a phase aware frequency domain deepfake detection framework that explicitly models phase magnitude interactions via a learnable attention mechanism. Our approach augments standard RGB input with Fast Fourier Transform (FFT) magnitude and local binary pattern (LBP) representations to expose subtle synthesis artifacts that remain indistinguishable under spatial analysis alone. Crucially, we introduce an input level phase aware attention module that uses phase discontinuities commonly introduced by synthetic generation to guide the model toward frequency patterns that are most indicative of manipulation before backbone feature extraction. The attended multi domain representation is processed by an efficient BNext M backbone, with optional channel spatial attention applied for semantic feature refinement. Extensive experiments on the CIFAKE and DFFD datasets demonstrate that our proposed model Phase4DFD outperforms state of the art spatial and frequency-based detectors while maintaining low computational overhead. Comprehensive ablation studies further confirm that explicit phase modeling provides complementary and non-redundant information beyond magnitude-only frequency representations.
Multimodal Emotion Recognition (MER) aims to perceive human emotions through three modes: language, vision, and audio. Previous methods primarily focused on modal fusion without adequately addressing significant distributional differences among modalities or considering their varying contributions to the task. They also lacked robust generalization capabilities across diverse textual model features, thus limiting performance in multimodal scenarios. Therefore, we propose a novel approach called Modality Interaction and Alignment Representation (MIAR). This network integrates contextual features across different modalities using a feature interaction to generate feature tokens to represent global representations of this modality extracting information from other modalities. These four tokens represent global representations of how each modality extracts information from others. MIAR aligns different modalities using contrastive learning and normalization strategies. We conduct experiments on two benchmarks: CMU-MOSI and CMU-MOSEI datasets, experimental results demonstrate the MIAR outperforms state-of-the-art MER methods.
Retrieval-Augmented Generation (RAG) has proven effective for knowledge synthesis, yet it encounters significant challenges in practical scenarios where data is inherently discrete and fragmented. In most environments, information is distributed across isolated files like reports and logs that lack explicit links. Standard search engines process files independently, ignoring the connections between them. Furthermore, manually building Knowledge Graphs is impractical for such vast data. To bridge this gap, we present Orion-RAG. Our core insight is simple yet effective: we do not need heavy algorithms to organize this data. Instead, we use a low-complexity strategy to extract lightweight paths that naturally link related concepts. We demonstrate that this streamlined approach suffices to transform fragmented documents into semi-structured data, enabling the system to link information across different files effectively. Extensive experiments demonstrate that Orion-RAG consistently outperforms mainstream frameworks across diverse domains, supporting real-time updates and explicit Human-in-the-Loop verification with high cost-efficiency. Experiments on FinanceBench demonstrate superior precision with a 25.2% relative improvement over strong baselines.
Stock market price prediction is a significant interdisciplinary research domain that depends at the intersection of finance, statistics, and economics. Forecasting Accurately predicting stock prices has always been a focal point for various researchers. However, existing statistical approaches for time-series prediction often fail to effectively forecast the probability range of future stock prices. Hence, to solve this problem, the Neural Prophet with a Deep Neural Network (NP-DNN) is proposed to predict stock market prices. The preprocessing technique used in this research is Z-score normalization, which normalizes stock price data by removing scale differences, making patterns easier to detect. Missing value imputation fills gaps in historical data, enhancing the models use of complete information for more accurate predictions. The Multi-Layer Perceptron (MLP) learns complex nonlinear relationships among stock market prices and extracts hidden patterns from the input data, thereby creating meaningful feature representations for better prediction accuracy. The proposed NP-DNN model achieved an accuracy of 99.21% compared with other approaches using the Fused Large Language Model. Keywords: deep neural network, forecasting stock prices, multi-layer perceptron, neural prophet, stock market price prediction.
Vision Language Models (VLMs) are poised to revolutionize the digital transformation of pharmacyceutical industry by enabling intelligent, scalable, and automated multi-modality content processing. Traditional manual annotation of heterogeneous data modalities (text, images, video, audio, and web links), is prone to inconsistencies, quality degradation, and inefficiencies in content utilization. The sheer volume of long video and audio data further exacerbates these challenges, (e.g. long clinical trial interviews and educational seminars). Here, we introduce a domain adapted Video to Video Clip Generation framework that integrates Audio Language Models (ALMs) and Vision Language Models (VLMs) to produce highlight clips. Our contributions are threefold: (i) a reproducible Cut & Merge algorithm with fade in/out and timestamp normalization, ensuring smooth transitions and audio/visual alignment; (ii) a personalization mechanism based on role definition and prompt injection for tailored outputs (marketing, training, regulatory); (iii) a cost efficient e2e pipeline strategy balancing ALM/VLM enhanced processing. Evaluations on Video MME benchmark (900) and our proprietary dataset of 16,159 pharmacy videos across 14 disease areas demonstrate 3 to 4 times speedup, 4 times cost reduction, and competitive clip quality. Beyond efficiency gains, we also report our methods improved clip coherence scores (0.348) and informativeness scores (0.721) over state of the art VLM baselines (e.g., Gemini 2.5 Pro), highlighting the potential of transparent, custom extractive, and compliance supporting video summarization for life sciences.