Information extraction is the process of automatically extracting structured information from unstructured text data.
Large Language Models (LLMs) face the "knowledge cutoff" challenge, where their frozen parametric memory prevents direct internalization of new information. While Supervised Fine-Tuning (SFT) is commonly used to update model knowledge, it often updates factual content without reliably improving the model's ability to use the newly incorporated information for question answering or decision-making. Reinforcement Learning (RL) is essential for acquiring reasoning skills; however, its high computational cost makes it impractical for efficient online adaptation. We empirically observe that the parameter updates induced by SFT and RL are nearly orthogonal. Based on this observation, we propose Parametric Skill Transfer (PaST), a framework that supports modular skill transfer for efficient and effective knowledge adaptation. By extracting a domain-agnostic Skill Vector from a source domain, we can linearly inject knowledge manipulation skills into a target model after it has undergone lightweight SFT on new data. Experiments on knowledge-incorporation QA (SQuAD, LooGLE) and agentic tool-use benchmarks (ToolBench) demonstrate the effectiveness of our method. On SQuAD, PaST outperforms the state-of-the-art self-editing SFT baseline by up to 9.9 points. PaST further scales to long-context QA on LooGLE with an 8.0-point absolute accuracy gain, and improves zero-shot ToolBench success rates by +10.3 points on average with consistent gains across tool categories, indicating strong scalability and cross-domain transferability of the Skill Vector.
Multimodal retrieval has emerged as a promising yet challenging research direction in recent years. Most existing studies in multimodal retrieval focus on capturing information in multimodal data that is similar to their paired texts, but often ignores the complementary information contained in multimodal data. In this study, we propose CIEA, a novel multimodal retrieval approach that employs Complementary Information Extraction and Alignment, which transforms both text and images in documents into a unified latent space and features a complementary information extractor designed to identify and preserve differences in the image representations. We optimize CIEA using two complementary contrastive losses to ensure semantic integrity and effectively capture the complementary information contained in images. Extensive experiments demonstrate the effectiveness of CIEA, which achieves significant improvements over both divide-and-conquer models and universal dense retrieval models. We provide an ablation study, further discussions, and case studies to highlight the advancements achieved by CIEA. To promote further research in the community, we have released the source code at https://github.com/zengdlong/CIEA.
Municipal meeting minutes record key decisions in local democratic processes. Unlike parliamentary proceedings, which typically adhere to standardized formats, they encode voting outcomes in highly heterogeneous, free-form narrative text that varies widely across municipalities, posing significant challenges for automated extraction. In this paper, we introduce VotIE (Voting Information Extraction), a new information extraction task aimed at identifying structured voting events in narrative deliberative records, and establish the first benchmark for this task using Portuguese municipal minutes, building on the recently introduced CitiLink corpus. Our experiments yield two key findings. First, under standard in-domain evaluation, fine-tuned encoders, specifically XLM-R-CRF, achieve the strongest performance, reaching 93.2\% macro F1, outperforming generative approaches. Second, in a cross-municipality setting that evaluates transfer to unseen administrative contexts, these models suffer substantial performance degradation, whereas few-shot LLMs demonstrate greater robustness, with significantly smaller declines in performance. Despite this generalization advantage, the high computational cost of generative models currently constrains their practicality. As a result, lightweight fine-tuned encoders remain a more practical option for large-scale, real-world deployment. To support reproducible research in administrative NLP, we publicly release our benchmark, trained models, and evaluation framework.
Recent advances in end-to-end autonomous driving show that policies trained on patch-aligned features extracted from foundation models generalize better to Out-of-Distribution (OOD). We hypothesize that due to the self-attention mechanism, each patch feature implicitly embeds/contains information from all other patches, represented in a different way and intensity, making these descriptors highly redundant. We quantify redundancy in such (BLIP2) features via PCA and cross-patch similarity: $90$% of variance is captured by $17/64$ principal components, and strong inter-token correlations are pervasive. Training on such overlapping information leads the policy to overfit spurious correlations, hurting OOD robustness. We present Stochastic-Patch-Selection (SPS), a simple yet effective approach for learning policies that are more robust, generalizable, and efficient. For every frame, SPS randomly masks a fraction of patch descriptors, not feeding them to the policy model, while preserving the spatial layout of the remaining patches. Thus, the policy is provided with different stochastic but complete views of the (same) scene: every random subset of patches acts like a different, yet still sensible, coherent projection of the world. The policy thus bases its decisions on features that are invariant to which specific tokens survive. Extensive experiments confirm that across all OOD scenarios, our method outperforms the state of the art (SOTA), achieving a $6.2$% average improvement and up to $20.4$% in closed-loop simulations, while being $2.4\times$ faster. We conduct ablations over masking rates and patch-feature reorganization, training and evaluating 9 systems, with 8 of them surpassing prior SOTA. Finally, we show that the same learned policy transfers to a physical, real-world car without any tuning.
Large language models (LLMs) demonstrate remarkable capabilities in natural language understanding and generation. Despite being trained on large-scale, high-quality data, LLMs still fail to outperform traditional static analysis tools in specialized domains like smart contract vulnerability detection. To address this issue, this paper proposes a post-training algorithm based on atomic task decomposition and fusion. This algorithm aims to achieve combinatorial generalization under limited data by decomposing complex reasoning tasks. Specifically, we decompose the reentrancy vulnerability detection task into four linearly independent atomic tasks: identifying external calls, identifying state updates, identifying data dependencies between external calls and state updates, and determining their data flow order. These tasks form the core components of our approach. By training on synthetic datasets, we generate three compiler-verified datasets. We then employ the Slither tool to extract structural information from the control flow graph and data flow graph, which is used to fine-tune the LLM's adapter. Experimental results demonstrate that low-rank normalization fusion with the LoRA adapter improves the LLM's reentrancy vulnerability detection accuracy to 98.2%, surpassing state-of-the-art methods. On 31 real-world contracts, the algorithm achieves a 20% higher recall than traditional analysis tools.
Named Entity Linking (NEL) is a core component of biomedical Information Extraction (IE) pipelines, yet assessing its quality at scale is challenging due to the high cost of expert annotations and the large size of corpora. In this paper, we present a sampling-based framework to estimate the NEL accuracy of large-scale IE corpora under statistical guarantees and constrained annotation budgets. We frame NEL accuracy estimation as a constrained optimization problem, where the objective is to minimize expected annotation cost subject to a target Margin of Error (MoE) for the corpus-level accuracy estimate. Building on recent works on knowledge graph accuracy estimation, we adapt Stratified Two-Stage Cluster Sampling (STWCS) to the NEL setting, defining label-based strata and global surface-form clusters in a way that is independent of NEL annotations. Applied to 11,184 NEL annotations in GutBrainIE -- a new biomedical corpus openly released in fall 2025 -- our framework reaches a MoE $\leq 0.05$ by manually annotating only 2,749 triples (24.6%), leading to an overall accuracy estimate of $0.915 \pm 0.0473$. A time-based cost model and simulations against a Simple Random Sampling (SRS) baseline show that our design reduces expert annotation time by about 29% at fixed sample size. The framework is generic and can be applied to other NEL benchmarks and IE pipelines that require scalable and statistically robust accuracy assessment.
Vision-Language-Action (VLA) models have emerged as essential generalist robot policies for diverse manipulation tasks, conventionally relying on directly translating multimodal inputs into actions via Vision-Language Model (VLM) embeddings. Recent advancements have introduced explicit intermediary reasoning, such as sub-task prediction (language) or goal image synthesis (vision), to guide action generation. However, these intermediate reasoning are often indirect and inherently limited in their capacity to convey the full, granular information required for precise action execution. Instead, we posit that the most effective form of reasoning is one that deliberates directly in the action space. We introduce Action Chain-of-Thought (ACoT), a paradigm where the reasoning process itself is formulated as a structured sequence of coarse action intents that guide the final policy. In this paper, we propose ACoT-VLA, a novel architecture that materializes the ACoT paradigm. Specifically, we introduce two complementary components: an Explicit Action Reasoner (EAR) and Implicit Action Reasoner (IAR). The former proposes coarse reference trajectories as explicit action-level reasoning steps, while the latter extracts latent action priors from internal representations of multimodal input, co-forming an ACoT that conditions the downstream action head to enable grounded policy learning. Extensive experiments in real-world and simulation environments demonstrate the superiority of our proposed method, which achieves 98.5%, 84.1%, and 47.4% on LIBERO, LIBERO-Plus and VLABench, respectively.
Traditional technology mapping suffers from systemic inaccuracies in delay estimation due to its reliance on abstract, technology-agnostic delay models that fail to capture the nuanced timing behavior behavior of real post-mapping circuits. To address this fundamental limitation, we introduce GPA(graph neural network (GNN)-based Path-Aware multi-view circuit learning), a novel GNN framework that learns precise, data-driven delay predictions by synergistically fusing three complementary views of circuit structure: And-Inverter Graphs (AIGs)-based functional encoding, post-mapping technology emphasizes critical timing paths. Trained exclusively on real cell delays extracted from critical paths of industrial-grade post-mapping netlists, GPA learns to classify cut delays with unprecedented accuracy, directly informing smarter mapping decisions. Evaluated on the 19 EPFL combinational benchmarks, GPA achieves 19.9%, 2.1% and 4.1% average delay reduction over the conventional heuristics methods (techmap, MCH) and the prior state-of-the-art ML-based approach SLAP, respectively-without compromising area efficiency.
Web pages form a cornerstone of available data for daily human consumption and with the rise of LLM-based search and learning systems a treasure trove of valuable data. The scale of this data and its unstructured format still continue to grow requiring ever more robust automated extraction and retrieval mechanisms. Existing work, leveraging the web pages Document Object Model (DOM), often derives clustering vectors from coordinates informed by the DOM such as visual placement or tree structure. The construction and component value of these vectors often go unexamined. Our work proposes and examines DOM coordinates in a detail to understand their impact on web page segmentation. Our work finds that there is no one-size-fits-all vector, and that visual coordinates under-perform compared to DOM coordinates by about 20-30% on average. This challenges the necessity of including visual coordinates in clustering vectors. Further, our work finds that simple vectors, comprised of single coordinates, fare better than complex vectors constituting 68.2% of the top performing vectors of the pages examined. Finally, we find that if a vector, clustering algorithm, and page are properly matched, one can achieve overall high segmentation accuracy at 74%. This constitutes a 20% improvement over a naive application of vectors. Conclusively, our results challenge the current orthodoxy for segmentation vector creation, opens up the possibility to optimize page segmentation via clustering on DOM coordinates, and highlights the importance of finding mechanisms to match the best approach for web page segmentation.
Although long-term memory systems have made substantial progress in recent years, they still exhibit clear limitations in adaptability, scalability, and self-evolution under continuous interaction settings. Inspired by cognitive theories, we propose HiMem, a hierarchical long-term memory framework for long-horizon dialogues, designed to support memory construction, retrieval, and dynamic updating during sustained interactions. HiMem constructs cognitively consistent Episode Memory via a Topic-Aware Event--Surprise Dual-Channel Segmentation strategy, and builds Note Memory that captures stable knowledge through a multi-stage information extraction pipeline. These two memory types are semantically linked to form a hierarchical structure that bridges concrete interaction events and abstract knowledge, enabling efficient retrieval without sacrificing information fidelity. HiMem supports both hybrid and best-effort retrieval strategies to balance accuracy and efficiency, and incorporates conflict-aware Memory Reconsolidation to revise and supplement stored knowledge based on retrieval feedback. This design enables continual memory self-evolution over long-term use. Experimental results on long-horizon dialogue benchmarks demonstrate that HiMem consistently outperforms representative baselines in accuracy, consistency, and long-term reasoning, while maintaining favorable efficiency. Overall, HiMem provides a principled and scalable design paradigm for building adaptive and self-evolving LLM-based conversational agents. The code is available at https://github.com/jojopdq/HiMem.