Style transfer is the process of applying the style of one image to another image using deep learning techniques.
Semantic segmentation networks require large amounts of pixel-level annotated data, which are costly to obtain for real-world images. Computer graphics engines can generate synthetic images alongside their ground-truth annotations. However, models trained on such images can perform poorly on real images due to the domain gap between real and synthetic images. Style transfer methods can reduce this difference by applying a realistic style to synthetic images. Choosing effective data transformations and their sequence is difficult due to the large combinatorial search space of style transfer operators. Using multi-objective genetic algorithms, we optimize pipelines to balance structural coherence and style similarity to target domains. We study the use of paired-image metrics on individual image samples during evolution to enable rapid pipeline evaluation, as opposed to standard distributional metrics that require the generation of many images. After optimization, we evaluate the resulting Pareto front using distributional metrics and segmentation performance. We apply this approach to standard datasets in synthetic-to-real domain adaptation: from the video game GTA5 to real image datasets Cityscapes and ACDC, focusing on adverse conditions. Results demonstrate that evolutionary algorithms can propose diverse augmentation pipelines adapted to different objectives. The contribution of this work is the formulation of style transfer as a sequencing problem suitable for evolutionary optimization and the study of efficient metrics that enable feasible search in this space. The source code is available at: https://github.com/echigot/MOOSS.
Human motion data is inherently rich and complex, containing both semantic content and subtle stylistic features that are challenging to model. We propose a novel method for effective disentanglement of the style and content in human motion data to facilitate style transfer. Our approach is guided by the insight that content corresponds to coarse motion attributes while style captures the finer, expressive details. To model this hierarchy, we employ Residual Vector Quantized Variational Autoencoders (RVQ-VAEs) to learn a coarse-to-fine representation of motion. We further enhance the disentanglement by integrating contrastive learning and a novel information leakage loss with codebook learning to organize the content and the style across different codebooks. We harness this disentangled representation using our simple and effective inference-time technique Quantized Code Swapping, which enables motion style transfer without requiring any fine-tuning for unseen styles. Our framework demonstrates strong versatility across multiple inference applications, including style transfer, style removal, and motion blending.
This paper studies reference-free style-conditioned character generation in text-to-image diffusion models, where high-quality synthesis requires both stable character structure and consistent, fine-grained style expression across diverse prompts. Existing approaches primarily rely on text-only prompting, which is often under-specified for visual style and tends to produce noticeable style drift and geometric inconsistency, or introduce reference-based adapters that depend on external images at inference time, increasing architectural complexity and limiting deployment flexibility.We propose PokeFusion Attention, a lightweight decoder-level cross-attention mechanism that fuses textual semantics with learned style embeddings directly inside the diffusion decoder. By decoupling text and style conditioning at the attention level, our method enables effective reference-free stylized generation while keeping the pretrained diffusion backbone fully frozen.PokeFusion Attention trains only decoder cross-attention layers together with a compact style projection module, resulting in a parameter-efficient and plug-and-play control component that can be easily integrated into existing diffusion pipelines and transferred across different backbones.Experiments on a stylized character generation benchmark (Pokemon-style) demonstrate that our method consistently improves style fidelity, semantic alignment, and character shape consistency compared with representative adapter-based baselines, while maintaining low parameter overhead and inference-time simplicity.
3D style transfer refers to the artistic stylization of 3D assets based on reference style images. Recently, 3DGS-based stylization methods have drawn considerable attention, primarily due to their markedly enhanced training and rendering speeds. However, a vital challenge for 3D style transfer is to strike a balance between the content and the patterns and colors of the style. Although the existing methods strive to achieve relatively balanced outcomes, the fixed-output paradigm struggles to adapt to the diverse content-style balance requirements from different users. In this work, we introduce a creative intensity-tunable 3D style transfer paradigm, dubbed \textbf{Tune-Your-Style}, which allows users to flexibly adjust the style intensity injected into the scene to match their desired content-style balance, thus enhancing the customizability of 3D style transfer. To achieve this goal, we first introduce Gaussian neurons to explicitly model the style intensity and parameterize a learnable style tuner to achieve intensity-tunable style injection. To facilitate the learning of tunable stylization, we further propose the tunable stylization guidance, which obtains multi-view consistent stylized views from diffusion models through cross-view style alignment, and then employs a two-stage optimization strategy to provide stable and efficient guidance by modulating the balance between full-style guidance from the stylized views and zero-style guidance from the initial rendering. Extensive experiments demonstrate that our method not only delivers visually appealing results, but also exhibits flexible customizability for 3D style transfer. Project page is available at https://zhao-yian.github.io/TuneStyle.
This paper presents AnthropoCam, a mobile-based neural style transfer (NST) system optimized for the visual synthesis of Anthropocene environments. Unlike conventional artistic NST, which prioritizes painterly abstraction, stylizing human-altered landscapes demands a careful balance between amplifying material textures and preserving semantic legibility. Industrial infrastructures, waste accumulations, and modified ecosystems contain dense, repetitive patterns that are visually expressive yet highly susceptible to semantic erosion under aggressive style transfer. To address this challenge, we systematically investigate the impact of NST parameter configurations on the visual translation of Anthropocene textures, including feature layer selection, style and content loss weighting, training stability, and output resolution. Through controlled experiments, we identify an optimal parameter manifold that maximizes stylistic expression while preventing semantic erasure. Our results demonstrate that appropriate combinations of convolutional depth, loss ratios, and resolution scaling enable the faithful transformation of anthropogenic material properties into a coherent visual language. Building on these findings, we implement a low-latency, feed-forward NST pipeline deployed on mobile devices. The system integrates a React Native frontend with a Flask-based GPU backend, achieving high-resolution inference within 3-5 seconds on general mobile hardware. This enables real-time, in-situ visual intervention at the site of image capture, supporting participatory engagement with Anthropocene landscapes. By coupling domain-specific NST optimization with mobile deployment, AnthropoCam reframes neural style transfer as a practical and expressive tool for real-time environmental visualization in the Anthropocene.
Reliable Docker-based environment construction is a dominant bottleneck for scaling execution-grounded training and evaluation of software engineering agents. We introduce DockSmith, a specialized agentic Docker builder designed to address this challenge. DockSmith treats environment construction not only as a preprocessing step, but as a core agentic capability that exercises long-horizon tool use, dependency reasoning, and failure recovery, yielding supervision that transfers beyond Docker building itself. DockSmith is trained on large-scale, execution-grounded Docker-building trajectories produced by a SWE-Factory-style pipeline augmented with a loop-detection controller and a cross-task success memory. Training a 30B-A3B model on these trajectories achieves open-source state-of-the-art performance on Multi-Docker-Eval, with 39.72% Fail-to-Pass and 58.28% Commit Rate. Moreover, DockSmith improves out-of-distribution performance on SWE-bench Verified, SWE-bench Multilingual, and Terminal-Bench 2.0, demonstrating broader agentic benefits of environment construction.
Content-preserving style transfer, generating stylized outputs based on content and style references, remains a significant challenge for Diffusion Transformers (DiTs) due to the inherent entanglement of content and style features in their internal representations. In this technical report, we present TeleStyle, a lightweight yet effective model for both image and video stylization. Built upon Qwen-Image-Edit, TeleStyle leverages the base model's robust capabilities in content preservation and style customization. To facilitate effective training, we curated a high-quality dataset of distinct specific styles and further synthesized triplets using thousands of diverse, in-the-wild style categories. We introduce a Curriculum Continual Learning framework to train TeleStyle on this hybrid dataset of clean (curated) and noisy (synthetic) triplets. This approach enables the model to generalize to unseen styles without compromising precise content fidelity. Additionally, we introduce a video-to-video stylization module to enhance temporal consistency and visual quality. TeleStyle achieves state-of-the-art performance across three core evaluation metrics: style similarity, content consistency, and aesthetic quality. Code and pre-trained models are available at https://github.com/Tele-AI/TeleStyle
Synthesizing personalized talking faces that uphold and highlight a speaker's unique style while maintaining lip-sync accuracy remains a significant challenge. A primary limitation of existing approaches is the intrinsic confounding of speaker-specific talking style and semantic content within facial motions, which prevents the faithful transfer of a speaker's unique persona to arbitrary speech. In this paper, we propose MirrorTalk, a generative framework based on a conditional diffusion model, combined with a Semantically-Disentangled Style Encoder (SDSE) that can distill pure style representations from a brief reference video. To effectively utilize this representation, we further introduce a hierarchical modulation strategy within the diffusion process. This mechanism guides the synthesis by dynamically balancing the contributions of audio and style features across distinct facial regions, ensuring both precise lip-sync accuracy and expressive full-face dynamics. Extensive experiments demonstrate that MirrorTalk achieves significant improvements over state-of-the-art methods in terms of lip-sync accuracy and personalization preservation.
Whereas reinforcement learning has been applied with success to a range of robotic control problems in complex, uncertain environments, reliance on extensive data - typically sourced from simulation environments - limits real-world deployment due to the domain gap between simulated and physical systems, coupled with limited real-world sample availability. We propose a novel method for sim-to-real transfer of reinforcement learning policies, based on a reinterpretation of neural style transfer from image processing to synthesise novel training data from unpaired unlabelled real world datasets. We employ a variational autoencoder to jointly learn self-supervised feature representations for style transfer and generate weakly paired source-target trajectories to improve physical realism of synthesised trajectories. We demonstrate the application of our approach based on the case study of robot cutting of unknown materials. Compared to baseline methods, including our previous work, CycleGAN, and conditional variational autoencoder-based time series translation, our approach achieves improved task completion time and behavioural stability with minimal real-world data. Our framework demonstrates robustness to geometric and material variation, and highlights the feasibility of policy adaptation in challenging contact-rich tasks where real-world reward information is unavailable.
Diffusion models have recently shown strong progress in generative tasks, offering a more stable alternative to GAN-based approaches for makeup transfer. Existing methods often suffer from limited datasets, poor disentanglement between identity and makeup features, and weak controllability. To address these issues, we make three contributions. First, we construct a curated high-quality dataset using a train-generate-filter-retrain strategy that combines synthetic, realistic, and filtered samples to improve diversity and fidelity. Second, we design a diffusion-based framework that disentangles identity and makeup features, ensuring facial structure and skin tone are preserved while applying accurate and diverse cosmetic styles. Third, we propose a text-guided mechanism that allows fine-grained and region-specific control, enabling users to modify eyes, lips, or face makeup with natural language prompts. Experiments on benchmarks and real-world scenarios demonstrate improvements in fidelity, identity preservation, and flexibility. Examples of our dataset can be found at: https://makeup-adapter.github.io.