Abstract:While diffusion models have demonstrated remarkable generative capabilities, existing style transfer techniques often struggle to maintain identity while achieving high-quality stylization. This limitation is particularly acute for images where faces are small or exhibit significant camera-to-face distances, frequently leading to inadequate identity preservation. To address this, we introduce a novel, training-free framework for identity-preserved stylized image synthesis using diffusion models. Key contributions include: (1) the "Mosaic Restored Content Image" technique, significantly enhancing identity retention, especially in complex scenes; and (2) a training-free content consistency loss that enhances the preservation of fine-grained content details by directing more attention to the original image during stylization. Our experiments reveal that the proposed approach substantially surpasses the baseline model in concurrently maintaining high stylistic fidelity and robust identity integrity, particularly under conditions of small facial regions or significant camera-to-face distances, all without necessitating model retraining or fine-tuning.
Abstract:Accurate prediction of pedestrian trajectories is crucial for enhancing the safety of autonomous vehicles and reducing traffic fatalities involving pedestrians. While numerous studies have focused on modeling interactions among pedestrians to forecast their movements, the influence of environmental factors and scene-object placements has been comparatively underexplored. In this paper, we present a novel trajectory prediction model that integrates both pedestrian interactions and environmental context to improve prediction accuracy. Our approach captures spatial and temporal interactions among pedestrians within a sparse graph framework. To account for pedestrian-scene interactions, we employ advanced image enhancement and semantic segmentation techniques to extract detailed scene features. These scene and interaction features are then fused through a cross-attention mechanism, enabling the model to prioritize relevant environmental factors that influence pedestrian movements. Finally, a temporal convolutional network processes the fused features to predict future pedestrian trajectories. Experimental results demonstrate that our method significantly outperforms existing state-of-the-art approaches, achieving ADE and FDE values of 0.252 and 0.372 meters, respectively, underscoring the importance of incorporating both social interactions and environmental context in pedestrian trajectory prediction.