Topic:Sleep Apnea Detection
What is Sleep Apnea Detection? Sleep-apnea detection is the process of identifying and diagnosing sleep apnea using physiological signals or sleep data.
Papers and Code
May 26, 2025
Abstract:Radar-based respiratory measurement is a promising tool for the noncontact detection of sleep apnea. Our team has reported that apnea events can be accurately detected using the statistical characteristics of the amplitude of respiratory displacement. However, apnea and hypopnea events are often followed by irregular breathing, reducing the detection accuracy. This study proposes a new method to overcome this performance degradation by repeatedly applying the detection method to radar data sets corresponding to multiple overlapping time intervals. Averaging the detected classes over multiple time intervals gives an analog value between 0 and 1, which can be interpreted as the probability that there is an apnea event. We show that the proposed method can mitigate the effect of irregular breathing that occurs after apnea / hypopnea events, and its performance is confirmed by experimental data taken from seven patients.
* 5 pages, 3 figures, and 2 tables. This work is going to be submitted
to the IEEE for possible publication
Via

May 22, 2025
Abstract:Human speech contains paralinguistic cues that reflect a speaker's physiological and neurological state, potentially enabling non-invasive detection of various medical phenotypes. We introduce the Human Phenotype Project Voice corpus (HPP-Voice): a dataset of 7,188 recordings in which Hebrew-speaking adults count for 30 seconds, with each speaker linked to up to 15 potentially voice-related phenotypes spanning respiratory, sleep, mental health, metabolic, immune, and neurological conditions. We present a systematic comparison of 14 modern speech embedding models, where modern speech embeddings from these 30-second counting tasks outperform MFCCs and demographics for downstream health condition classifications. We found that embedding learned from a speaker identification model can predict objectively measured moderate to severe sleep apnea in males with an AUC of 0.64 $\pm$ 0.03, while MFCC and demographic features led to AUCs of 0.56 $\pm$ 0.02 and 0.57 $\pm$ 0.02, respectively. Additionally, our results reveal gender-specific patterns in model effectiveness across different medical domains. For males, speaker identification and diarization models consistently outperformed speech foundation models for respiratory conditions (e.g., asthma: 0.61 $\pm$ 0.03 vs. 0.56 $\pm$ 0.02) and sleep-related conditions (insomnia: 0.65 $\pm$ 0.04 vs. 0.59 $\pm$ 0.05). For females, speaker diarization models performed best for smoking status (0.61 $\pm$ 0.02 vs 0.55 $\pm$ 0.02), while Hebrew-specific models performed best (0.59 $\pm$ 0.02 vs. 0.58 $\pm$ 0.02) in classifying anxiety compared to speech foundation models. Our findings provide evidence that a simple counting task can support large-scale, multi-phenotypic voice screening and highlight which embedding families generalize best to specific conditions, insights that can guide future vocal biomarker research and clinical deployment.
Via

Apr 17, 2025
Abstract:Polysomnography (PSG) signals are essential for studying sleep processes and diagnosing sleep disorders. Analyzing PSG data through deep neural networks (DNNs) for automated sleep monitoring has become increasingly feasible. However, the limited availability of datasets for certain sleep events often leads to DNNs focusing on a single task with a single-sourced training dataset. As a result, these models struggle to transfer to new sleep events and lack robustness when applied to new datasets. To address these challenges, we propose PSG-MAE, a mask autoencoder (MAE) based pre-training framework. By performing self-supervised learning on a large volume of unlabeled PSG data, PSG-MAE develops a robust feature extraction network that can be broadly applied to various sleep event monitoring tasks. Unlike conventional MAEs, PSG-MAE generates complementary masks across PSG channels, integrates a multichannel signal reconstruction method, and employs a self-supervised inter-channel contrastive learning (ICCL) strategy. This approach enables the encoder to capture temporal features from each channel while simultaneously learning latent relationships between channels, thereby enhancing the utilization of multichannel information. Experimental results show that PSG-MAE effectively captures both temporal details and inter-channel information from PSG signals. When the encoder pre-trained through PSG-MAE is fine-tuned with downstream feature decomposition networks, it achieves an accuracy of 83.7% for sleep staging and 90.45% for detecting obstructive sleep apnea, which highlights the framework's robustness and broad applicability.
* 11 pages, 5 figures
Via

Feb 28, 2025
Abstract:Sleep is essential for maintaining human health and quality of life. Analyzing physiological signals during sleep is critical in assessing sleep quality and diagnosing sleep disorders. However, manual diagnoses by clinicians are time-intensive and subjective. Despite advances in deep learning that have enhanced automation, these approaches remain heavily dependent on large-scale labeled datasets. This study introduces SynthSleepNet, a multimodal hybrid self-supervised learning framework designed for analyzing polysomnography (PSG) data. SynthSleepNet effectively integrates masked prediction and contrastive learning to leverage complementary features across multiple modalities, including electroencephalogram (EEG), electrooculography (EOG), electromyography (EMG), and electrocardiogram (ECG). This approach enables the model to learn highly expressive representations of PSG data. Furthermore, a temporal context module based on Mamba was developed to efficiently capture contextual information across signals. SynthSleepNet achieved superior performance compared to state-of-the-art methods across three downstream tasks: sleep-stage classification, apnea detection, and hypopnea detection, with accuracies of 89.89%, 99.75%, and 89.60%, respectively. The model demonstrated robust performance in a semi-supervised learning environment with limited labels, achieving accuracies of 87.98%, 99.37%, and 77.52% in the same tasks. These results underscore the potential of the model as a foundational tool for the comprehensive analysis of PSG data. SynthSleepNet demonstrates comprehensively superior performance across multiple downstream tasks compared to other methodologies, making it expected to set a new standard for sleep disorder monitoring and diagnostic systems.
* 18 pages, 5 figures
Via

Feb 18, 2025
Abstract:Sleep is an essential component of human physiology, contributing significantly to overall health and quality of life. Accurate sleep staging and disorder detection are crucial for assessing sleep quality. Studies in the literature have proposed PSG-based approaches and machine-learning methods utilizing single-modality signals. However, existing methods often lack multimodal, multilabel frameworks and address sleep stages and disorders classification separately. In this paper, we propose a 1D-Vision Transformer for simultaneous classification of sleep stages and sleep disorders. Our method exploits the sleep disorders' correlation with specific sleep stage patterns and performs a simultaneous identification of a sleep stage and sleep disorder. The model is trained and tested using multimodal-multilabel sensory data (including photoplethysmogram, respiratory flow, and respiratory effort signals). The proposed method shows an overall accuracy (cohen's Kappa) of 78% (0.66) for five-stage sleep classification and 74% (0.58) for sleep apnea classification. Moreover, we analyzed the encoder attention weights to clarify our models' predictions and investigate the influence different features have on the models' outputs. The result shows that identified patterns, such as respiratory troughs and peaks, make a higher contribution to the final classification process.
Via

Jan 25, 2025
Abstract:Objective: The aim of the study is to develop a novel method for improved diagnosis of obstructive sleep apnea-hypopnea syndrome (OSAHS) in clinical or home settings, with the focus on achieving diagnostic performance comparable to the gold-standard polysomnography (PSG) with significantly reduced monitoring burden. Methods: We propose a method using millimeter-wave radar and pulse oximeter for OSAHS diagnosis (ROSA). It contains a sleep apnea-hypopnea events (SAE) detection network, which directly predicts the temporal localization of SAE, and a sleep staging network, which predicts the sleep stages throughout the night, based on radar signals. It also fuses oxygen saturation (SpO2) information from the pulse oximeter to adjust the score of SAE detected by radar. Results: Experimental results on a real-world dataset (>800 hours of overnight recordings, 100 subjects) demonstrated high agreement (ICC=0.9870) on apnea-hypopnea index (AHI) between ROSA and PSG. ROSA also exhibited excellent diagnostic performance, exceeding 90% in accuracy across AHI diagnostic thresholds of 5, 15 and 30 events/h. Conclusion: ROSA improves diagnostic accuracy by fusing millimeter-wave radar and pulse oximeter data. It provides a reliable and low-burden solution for OSAHS diagnosis. Significance: ROSA addresses the limitations of high complexity and monitoring burden associated with traditional PSG. The high accuracy and low burden of ROSA show its potential to improve the accessibility of OSAHS diagnosis among population.
Via

Jan 16, 2025
Abstract:Polysomnographic sleep analysis is the standard clinical method to accurately diagnose and treat sleep disorders. It is an intricate process which involves the manual identification, classification, and location of multiple sleep event patterns. This is complex, for which identification of different types of events involves focusing on different subsets of signals, resulting on an iterative time-consuming process entailing several visual analysis passes. In this paper we propose a multi-task deep-learning approach for the simultaneous detection of sleep events and hypnogram construction in one single pass. Taking as reference state-of-the-art methodology for object-detection in the field of Computer Vision, we reformulate the problem for the analysis of multi-variate time sequences, and more specifically for pattern detection in the sleep analysis scenario. We investigate the performance of the resulting method in identifying different assembly combinations of EEG arousals, respiratory events (apneas and hypopneas) and sleep stages, also considering different input signal montage configurations. Furthermore, we evaluate our approach using two independent datasets, assessing true-generalization effects involving local and external validation scenarios. Based on our results, we analyze and discuss our method's capabilities and its potential wide-range applicability across different settings and datasets.
Via

Dec 08, 2024
Abstract:The growing demand for accurate, continuous, and non-invasive health monitoring has propelled multi-sensor data fusion to the forefront of healthcare technology. This review aims to provide an overview of the development of fusion frameworks in the literature and common terminology used in fusion literature. The review introduces the fusion classification standards and methods that are most relevant from an algorithm development perspective. Applications of the reviewed fusion frameworks in fields such as defense, autonomous driving, robotics, and image fusion are also discussed to provide contextual information on the various fusion methodologies that have been developed in this field. This review provides a comprehensive analysis of multi-sensor data fusion methods applied to health monitoring systems, focusing on key algorithms, applications, challenges, and future directions. We examine commonly used fusion techniques, including Kalman filters, Bayesian networks, and machine learning models. By integrating data from various sources, these fusion approaches enhance the reliability, accuracy, and resilience of health monitoring systems. However, challenges such as data quality and differences in acquisition systems exist, calling for intelligent fusion algorithms in recent years. The review finally converges on applications of fusion algorithms in biomedical inference tasks like heartbeat detection, respiration rate estimation, sleep apnea detection, arrhythmia detection, and atrial fibrillation detection.
Via

Dec 28, 2024
Abstract:This study proposes a novel lightweight neural network model leveraging features extracted from electrocardiogram (ECG) and respiratory signals for early OSA screening. ECG signals are used to generate feature spectrograms to predict sleep stages, while respiratory signals are employed to detect sleep-related breathing abnormalities. By integrating these predictions, the method calculates the apnea-hypopnea index (AHI) with enhanced accuracy, facilitating precise OSA diagnosis. The method was validated on three publicly available sleep apnea databases: the Apnea-ECG database, the UCDDB dataset, and the MIT-BIH Polysomnographic database. Results showed an overall OSA detection accuracy of 0.978, highlighting the model's robustness. Respiratory event classification achieved an accuracy of 0.969 and an area under the receiver operating characteristic curve (ROC-AUC) of 0.98. For sleep stage classification, in UCDDB dataset, the ROC-AUC exceeded 0.85 across all stages, with recall for Sleep reaching 0.906 and specificity for REM and Wake states at 0.956 and 0.937, respectively. This study underscores the potential of integrating lightweight neural networks with multi-signal analysis for accurate, portable, and cost-effective OSA screening, paving the way for broader adoption in home-based and wearable health monitoring systems.
Via

Nov 01, 2024
Abstract:Pediatric sleep is an important but often overlooked area in health informatics. We present PedSleepMAE, a generative model that fully leverages multimodal pediatric sleep signals including multichannel EEGs, respiratory signals, EOGs and EMG. This masked autoencoder-based model performs comparably to supervised learning models in sleep scoring and in the detection of apnea, hypopnea, EEG arousal and oxygen desaturation. Its embeddings are also shown to capture subtle differences in sleep signals coming from a rare genetic disorder. Furthermore, PedSleepMAE generates realistic signals that can be used for sleep segment retrieval, outlier detection, and missing channel imputation. This is the first general-purpose generative model trained on multiple types of pediatric sleep signals.
Via
