Abstract:Electrocardiography (ECG) offers critical cardiovascular insights, such as identifying arrhythmias and myocardial ischemia, but enabling automated systems to answer complex clinical questions directly from ECG signals (ECG-QA) remains a significant challenge. Current approaches often lack robust multimodal reasoning capabilities or rely on generic architectures ill-suited for the nuances of physiological signals. We introduce Q-Heart, a novel multimodal framework designed to bridge this gap. Q-Heart leverages a powerful, adapted ECG encoder and integrates its representations with textual information via a specialized ECG-aware transformer-based mapping layer. Furthermore, Q-Heart leverages dynamic prompting and retrieval of relevant historical clinical reports to guide tuning the language model toward knowledge-aware ECG reasoning. Extensive evaluations on the benchmark ECG-QA dataset show Q-Heart achieves state-of-the-art performance, outperforming existing methods by a 4% improvement in exact match accuracy. Our work demonstrates the effectiveness of combining domain-specific architectural adaptations with knowledge-augmented LLM instruction tuning for complex physiological ECG analysis, paving the way for more capable and potentially interpretable clinical patient care systems.
Abstract:Medical audio signals, such as heart and lung sounds, play a crucial role in clinical diagnosis. However, analyzing these signals remains challenging: traditional methods rely on handcrafted features or supervised deep learning models that demand extensive labeled datasets, limiting their scalability and applicability. To address these issues, we propose CaReAQA, an audio-language model that integrates a foundation audio model with the reasoning capabilities of large language models, enabling clinically relevant, open-ended diagnostic responses. Alongside CaReAQA, we introduce CaReSound, a benchmark dataset of annotated medical audio recordings enriched with metadata and paired question-answer examples, intended to drive progress in diagnostic reasoning research. Evaluation results show that CaReAQA achieves 86.2% accuracy on open-ended diagnostic reasoning tasks, outperforming baseline models. It also generalizes well to closed-ended classification tasks, achieving an average accuracy of 56.9% on unseen datasets. Our findings show how audio-language integration and reasoning advances medical diagnostics, enabling efficient AI systems for clinical decision support.
Abstract:Photoplethysmography (PPG) is a widely used non-invasive technique for monitoring cardiovascular health and various physiological parameters on consumer and medical devices. While motion artifacts are well-known challenges in dynamic settings, suboptimal skin-sensor contact in sedentary conditions - a critical issue often overlooked in existing literature - can distort PPG signal morphology, leading to the loss or shift of essential waveform features and therefore degrading sensing performance. In this work, we propose CP-PPG, a novel approach that transforms Contact Pressure-distorted PPG signals into ones with the ideal morphology. CP-PPG incorporates a novel data collection approach, a well-crafted signal processing pipeline, and an advanced deep adversarial model trained with a custom PPG-aware loss function. We validated CP-PPG through comprehensive evaluations, including 1) morphology transformation performance on our self-collected dataset, 2) downstream physiological monitoring performance on public datasets, and 3) in-the-wild performance. Extensive experiments demonstrate substantial and consistent improvements in signal fidelity (Mean Absolute Error: 0.09, 40% improvement over the original signal) as well as downstream performance across all evaluations in Heart Rate (HR), Heart Rate Variability (HRV), Respiration Rate (RR), and Blood Pressure (BP) estimation (on average, 21% improvement in HR; 41-46% in HRV; 6% in RR; and 4-5% in BP). These findings highlight the critical importance of addressing skin-sensor contact issues for accurate and dependable PPG-based physiological monitoring. Furthermore, CP-PPG can serve as a generic, plug-in API to enhance PPG signal quality.
Abstract:Pediatric sleep is an important but often overlooked area in health informatics. We present PedSleepMAE, a generative model that fully leverages multimodal pediatric sleep signals including multichannel EEGs, respiratory signals, EOGs and EMG. This masked autoencoder-based model performs comparably to supervised learning models in sleep scoring and in the detection of apnea, hypopnea, EEG arousal and oxygen desaturation. Its embeddings are also shown to capture subtle differences in sleep signals coming from a rare genetic disorder. Furthermore, PedSleepMAE generates realistic signals that can be used for sleep segment retrieval, outlier detection, and missing channel imputation. This is the first general-purpose generative model trained on multiple types of pediatric sleep signals.
Abstract:Electrocardiogram (ECG) interpretation requires specialized expertise, often involving synthesizing insights from ECG signals with complex clinical queries posed in natural language. The scarcity of labeled ECG data coupled with the diverse nature of clinical inquiries presents a significant challenge for developing robust and adaptable ECG diagnostic systems. This work introduces a novel multimodal meta-learning method for few-shot ECG question answering, addressing the challenge of limited labeled data while leveraging the rich knowledge encoded within large language models (LLMs). Our LLM-agnostic approach integrates a pre-trained ECG encoder with a frozen LLM (e.g., LLaMA and Gemma) via a trainable fusion module, enabling the language model to reason about ECG data and generate clinically meaningful answers. Extensive experiments demonstrate superior generalization to unseen diagnostic tasks compared to supervised baselines, achieving notable performance even with limited ECG leads. For instance, in a 5-way 5-shot setting, our method using LLaMA-3.1-8B achieves accuracy of 84.6%, 77.3%, and 69.6% on single verify, choose and query question types, respectively. These results highlight the potential of our method to enhance clinical ECG interpretation by combining signal processing with the nuanced language understanding capabilities of LLMs, particularly in data-constrained scenarios.
Abstract:The high incidence and mortality rates associated with respiratory diseases underscores the importance of early screening. Machine learning models can automate clinical consultations and auscultation, offering vital support in this area. However, the data involved, spanning demographics, medical history, symptoms, and respiratory audio, are heterogeneous and complex. Existing approaches are insufficient and lack generalizability, as they typically rely on limited training data, basic fusion techniques, and task-specific models. In this paper, we propose RespLLM, a novel multimodal large language model (LLM) framework that unifies text and audio representations for respiratory health prediction. RespLLM leverages the extensive prior knowledge of pretrained LLMs and enables effective audio-text fusion through cross-modal attentions. Instruction tuning is employed to integrate diverse data from multiple sources, ensuring generalizability and versatility of the model. Experiments on five real-world datasets demonstrate that RespLLM outperforms leading baselines by an average of 4.6% on trained tasks, 7.9% on unseen datasets, and facilitates zero-shot predictions for new tasks. Our work lays the foundation for multimodal models that can perceive, listen to, and understand heterogeneous data, paving the way for scalable respiratory health diagnosis.
Abstract:Accurate interpretation of Electrocardiogram (ECG) signals is pivotal for diagnosing cardiovascular diseases. Integrating ECG signals with their accompanying textual reports holds immense potential to enhance clinical diagnostics through the combination of physiological data and qualitative insights. However, this integration faces significant challenges due to inherent modality disparities and the scarcity of labeled data for robust cross-modal learning. To address these obstacles, we propose C-MELT, a novel framework that pre-trains ECG and text data using a contrastive masked auto-encoder architecture. C-MELT uniquely combines the strengths of generative with enhanced discriminative capabilities to achieve robust cross-modal representations. This is accomplished through masked modality modeling, specialized loss functions, and an improved negative sampling strategy tailored for cross-modal alignment. Extensive experiments on five public datasets across diverse downstream tasks demonstrate that C-MELT significantly outperforms existing methods, achieving 15% and 2% increases in linear probing and zero-shot performance over state-of-the-art models, respectively. These results highlight the effectiveness of C-MELT, underscoring its potential to advance automated clinical diagnostics through multi-modal representations.
Abstract:Interpreting electrocardiograms (ECGs) and generating comprehensive reports remain challenging tasks in cardiology, often requiring specialized expertise and significant time investment. To address these critical issues, we propose ECG-ReGen, a retrieval-based approach for ECG-to-text report generation and question answering. Our method leverages a self-supervised learning for the ECG encoder, enabling efficient similarity searches and report retrieval. By combining pre-training with dynamic retrieval and Large Language Model (LLM)-based refinement, ECG-ReGen effectively analyzes ECG data and answers related queries, with the potential of improving patient care. Experiments conducted on the PTB-XL and MIMIC-IV-ECG datasets demonstrate superior performance in both in-domain and cross-domain scenarios for report generation. Furthermore, our approach exhibits competitive performance on ECG-QA dataset compared to fully supervised methods when utilizing off-the-shelf LLMs for zero-shot question answering. This approach, effectively combining self-supervised encoder and LLMs, offers a scalable and efficient solution for accurate ECG interpretation, holding significant potential to enhance clinical decision-making.
Abstract:Federated learning (FL) has emerged as a prominent method for collaboratively training machine learning models using local data from edge devices, all while keeping data decentralized. However, accounting for the quality of data contributed by local clients remains a critical challenge in FL, as local data are often susceptible to corruption by various forms of noise and perturbations, which compromise the aggregation process and lead to a subpar global model. In this work, we focus on addressing the problem of noisy data in the input space, an under-explored area compared to the label noise. We propose a comprehensive assessment of client input in the gradient space, inspired by the distinct disparity observed between the density of gradient norm distributions of models trained on noisy and clean input data. Based on this observation, we introduce a straightforward yet effective approach to identify clients with low-quality data at the initial stage of FL. Furthermore, we propose a noise-aware FL aggregation method, namely Federated Noise-Sifting (FedNS), which can be used as a plug-in approach in conjunction with widely used FL strategies. Our extensive evaluation on diverse benchmark datasets under different federated settings demonstrates the efficacy of FedNS. Our method effortlessly integrates with existing FL strategies, enhancing the global model's performance by up to 13.68% in IID and 15.85% in non-IID settings when learning from noisy decentralized data.
Abstract:Federated Learning (FL) enables multiple machines to collaboratively train a machine learning model without sharing of private training data. Yet, especially for heterogeneous models, a key bottleneck remains the transfer of knowledge gained from each client model with the server. One popular method, FedDF, uses distillation to tackle this task with the use of a common, shared dataset on which predictions are exchanged. However, in many contexts such a dataset might be difficult to acquire due to privacy and the clients might not allow for storage of a large shared dataset. To this end, in this paper, we introduce a new method that improves this knowledge distillation method to only rely on a single shared image between clients and server. In particular, we propose a novel adaptive dataset pruning algorithm that selects the most informative crops generated from only a single image. With this, we show that federated learning with distillation under a limited shared dataset budget works better by using a single image compared to multiple individual ones. Finally, we extend our approach to allow for training heterogeneous client architectures by incorporating a non-uniform distillation schedule and client-model mirroring on the server side.