Abstract:Polysomnography (PSG) signals are essential for studying sleep processes and diagnosing sleep disorders. Analyzing PSG data through deep neural networks (DNNs) for automated sleep monitoring has become increasingly feasible. However, the limited availability of datasets for certain sleep events often leads to DNNs focusing on a single task with a single-sourced training dataset. As a result, these models struggle to transfer to new sleep events and lack robustness when applied to new datasets. To address these challenges, we propose PSG-MAE, a mask autoencoder (MAE) based pre-training framework. By performing self-supervised learning on a large volume of unlabeled PSG data, PSG-MAE develops a robust feature extraction network that can be broadly applied to various sleep event monitoring tasks. Unlike conventional MAEs, PSG-MAE generates complementary masks across PSG channels, integrates a multichannel signal reconstruction method, and employs a self-supervised inter-channel contrastive learning (ICCL) strategy. This approach enables the encoder to capture temporal features from each channel while simultaneously learning latent relationships between channels, thereby enhancing the utilization of multichannel information. Experimental results show that PSG-MAE effectively captures both temporal details and inter-channel information from PSG signals. When the encoder pre-trained through PSG-MAE is fine-tuned with downstream feature decomposition networks, it achieves an accuracy of 83.7% for sleep staging and 90.45% for detecting obstructive sleep apnea, which highlights the framework's robustness and broad applicability.
Abstract:In this paper, we model the minimum achievable throughput within a transmission block of restricted duration and aim to maximize it in movable antenna (MA)-enabled multiuser downlink communications. Particularly, we account for the antenna moving delay caused by mechanical movement, which has not been fully considered in previous studies, and reveal the trade-off between the delay and signal-to-interference-plus-noise ratio at users. To this end, we first consider a single-user setup to analyze the necessity of antenna movement. By quantizing the virtual angles of arrival, we derive the requisite region size for antenna moving, design the initial MA position, and elucidate the relationship between quantization resolution and moving region size. Furthermore, an efficient algorithm is developed to optimize MA position via successive convex approximation, which is subsequently extended to the general multiuser setup. Numerical results demonstrate that the proposed algorithms outperform fixed-position antenna schemes and existing ones without consideration of movement delay. Additionally, our algorithms exhibit excellent adaptability and stability across various transmission block durations and moving region sizes, and are robust to different antenna moving speeds. This allows the hardware cost of MA-aided systems to be reduced by employing low rotational speed motors.
Abstract:This paper investigates the utility of movable antenna (MA) assistance for the multiple-input single-output (MISO) interference channel. We exploit an additional design degree of freedom provided by MA to enhance the desired signal and suppress interference so as to reduce the total transmit power of interference network. To this end, we jointly optimize the MA positions and transmit beamforming, subject to the signal-to-interference-plus-noise ratio constraints of users. To address the non-convex optimization problem, we propose an efficient iterative algorithm to alternately optimize the MA positions via successive convex approximation method and the transmit beamforming via second-order cone program approach. Numerical results demonstrate that the proposed MA-enabled MISO interference network outperforms its conventional counterpart without MA, which significantly enhances the capability of inter-cell frequency reuse and reduces the complexity of transmitter design.