Deep learning has transformed visual data analysis, with Convolutional Neural Networks (CNNs) becoming highly effective in learning meaningful feature representations directly from images. Unlike traditional manual feature engineering methods, CNNs automatically extract hierarchical visual patterns, enabling strong performance across diverse real-world contexts. This study investigates the effectiveness of CNN-based architectures across five heterogeneous datasets spanning agricultural and urban domains: mango variety classification, paddy variety identification, road surface condition assessment, auto-rickshaw detection, and footpath encroachment monitoring. These datasets introduce varying challenges, including differences in illumination, resolution, environmental complexity, and class imbalance, necessitating adaptable and robust learning models. We evaluate a lightweight, task-specific custom CNN alongside established deep architectures, including ResNet-18 and VGG-16, trained both from scratch and using transfer learning. Through systematic preprocessing, augmentation, and controlled experimentation, we analyze how architectural complexity, model depth, and pre-training influence convergence, generalization, and performance across datasets of differing scale and difficulty. The key contributions of this work are: (1) the development of an efficient custom CNN that achieves competitive performance across multiple application domains, and (2) a comprehensive comparative analysis highlighting when transfer learning and deep architectures provide substantial advantages, particularly in data-constrained environments. These findings offer practical insights for deploying deep learning models in resource-limited yet high-impact real-world visual classification tasks.
This study presents a comprehensive comparative analysis of custom-built Convolutional Neural Networks (CNNs) against popular pre-trained architectures (ResNet-18 and VGG-16) using both feature extraction and transfer learning approaches. We evaluated these models across five diverse image classification datasets from Bangladesh: Footpath Vision, Auto Rickshaw Detection, Mango Image Classification, Paddy Variety Recognition, and Road Damage Detection. Our experimental results demonstrate that transfer learning with fine-tuning consistently outperforms both custom CNNs built from scratch and feature extraction methods, achieving accuracy improvements ranging from 3% to 76% across different datasets. Notably, ResNet-18 with fine-tuning achieved perfect 100% accuracy on the Road Damage BD dataset. While custom CNNs offer advantages in model size (3.4M parameters vs. 11-134M for pre-trained models) and training efficiency on simpler tasks, pre-trained models with transfer learning provide superior performance, particularly on complex classification tasks with limited training data. This research provides practical insights for practitioners in selecting appropriate deep learning approaches based on dataset characteristics, computational resources, and performance requirements.
Deep learning has advanced vectorized road extraction in urban settings, yet off-road environments remain underexplored and challenging. A significant domain gap causes advanced models to fail in wild terrains due to two key issues: lack of large-scale vectorized datasets and structural weakness in prevailing methods. Models such as SAM-Road employ a node-centric paradigm that reasons at sparse endpoints, making them fragile to occlusions and ambiguous junctions in off-road scenes, leading to topological errors. This work addresses these limitations in two complementary ways. First, we release WildRoad, a global off-road road network dataset constructed efficiently with a dedicated interactive annotation tool tailored for road-network labeling. Second, we introduce MaGRoad (Mask-aware Geodesic Road network extractor), a path-centric framework that aggregates multi-scale visual evidence along candidate paths to infer connectivity robustly. Extensive experiments show that MaGRoad achieves state-of-the-art performance on our challenging WildRoad benchmark while generalizing well to urban datasets. A streamlined pipeline also yields roughly 2.5x faster inference, improving practical applicability. Together, the dataset and path-centric paradigm provide a stronger foundation for mapping roads in the wild. We release both the dataset and code at https://github.com/xiaofei-guan/MaGRoad.




Multi-agent collaborative perception (CP) is a promising paradigm for improving autonomous driving safety, particularly for vulnerable road users like pedestrians, via robust 3D perception. However, existing CP approaches often optimize for vehicle detection performance metrics, underperforming on smaller, safety-critical objects such as pedestrians, where detection failures can be catastrophic. Furthermore, previous CP methods rely on full feature exchange rather than communicating only salient features that help reduce false negatives. To this end, we present FocalComm, a novel collaborative perception framework that focuses on exchanging hard-instance-oriented features among connected collaborative agents. FocalComm consists of two key novel designs: (1) a learnable progressive hard instance mining (HIM) module to extract hard instance-oriented features per agent, and (2) a query-based feature-level (intermediate) fusion technique that dynamically weights these identified features during collaboration. We show that FocalComm outperforms state-of-the-art collaborative perception methods on two challenging real-world datasets (V2X-Real and DAIR-V2X) across both vehicle-centric and infrastructure-centric collaborative setups. FocalComm also shows a strong performance gain in pedestrian detection in V2X-Real.
In bus arrival time prediction, the process of organizing road infrastructure network data into homogeneous entities is known as segmentation. Segmenting a road network is widely recognized as the first and most critical step in developing an arrival time prediction system, particularly for auto-regressive-based approaches. Traditional methods typically employ a uniform segmentation strategy, which fails to account for varying physical constraints along roads, such as road conditions, intersections, and points of interest, thereby limiting prediction efficiency. In this paper, we propose a Reinforcement Learning (RL)-based approach to efficiently and adaptively learn non-uniform road segments for arrival time prediction. Our method decouples the prediction process into two stages: 1) Non-uniform road segments are extracted based on their impact scores using the proposed RL framework; and 2) A linear prediction model is applied to the selected segments to make predictions. This method ensures optimal segment selection while maintaining computational efficiency, offering a significant improvement over traditional uniform approaches. Furthermore, our experimental results suggest that the linear approach can even achieve better performance than more complex methods. Extensive experiments demonstrate the superiority of the proposed method, which not only enhances efficiency but also improves learning performance on large-scale benchmarks. The dataset and the code are publicly accessible at: https://github.com/pangjunbiao/Less-is-More.
This paper proposes two new algorithms for the lane keeping system (LKS) in autonomous vehicles (AVs) operating under snowy road conditions. These algorithms use deep reinforcement learning (DRL) to handle uncertainties and slippage. They include Action-Robust Recurrent Deep Deterministic Policy Gradient (AR-RDPG) and end-to-end Action-Robust convolutional neural network Attention Deterministic Policy Gradient (AR-CADPG), two action-robust approaches for decision-making. In the AR-RDPG method, within the perception layer, camera images are first denoised using multi-scale neural networks. Then, the centerline coefficients are extracted by a pre-trained deep convolutional neural network (DCNN). These coefficients, concatenated with the driving characteristics, are used as input to the control layer. The AR-CADPG method presents an end-to-end approach in which a convolutional neural network (CNN) and an attention mechanism are integrated within a DRL framework. Both methods are first trained in the CARLA simulator and validated under various snowy scenarios. Real-world experiments on a Jetson Nano-based autonomous vehicle confirm the feasibility and stability of the learned policies. Among the two models, the AR-CADPG approach demonstrates superior path-tracking accuracy and robustness, highlighting the effectiveness of combining temporal memory, adversarial resilience, and attention mechanisms in AVs.
Camouflaged Object Detection (COD) stands as a significant challenge in computer vision, dedicated to identifying and segmenting objects visually highly integrated with their backgrounds. Current mainstream methods have made progress in cross-layer feature fusion, but two critical issues persist during the decoding stage. The first is insufficient cross-channel information interaction within the same-layer features, limiting feature expressiveness. The second is the inability to effectively co-model boundary and region information, making it difficult to accurately reconstruct complete regions and sharp boundaries of objects. To address the first issue, we propose the Channel Information Interaction Module (CIIM), which introduces a horizontal-vertical integration mechanism in the channel dimension. This module performs feature reorganization and interaction across channels to effectively capture complementary cross-channel information. To address the second issue, we construct a collaborative decoding architecture guided by prior knowledge. This architecture generates boundary priors and object localization maps through Boundary Extraction (BE) and Region Extraction (RE) modules, then employs hybrid attention to collaboratively calibrate decoded features, effectively overcoming semantic ambiguity and imprecise boundaries. Additionally, the Multi-scale Enhancement (MSE) module enriches contextual feature representations. Extensive experiments on four COD benchmark datasets validate the effectiveness and state-of-the-art performance of the proposed model. We further transferred our model to the Salient Object Detection (SOD) task and demonstrated its adaptability across downstream tasks, including polyp segmentation, transparent object detection, and industrial and road defect detection. Code and experimental results are publicly available at: https://github.com/akuan1234/ARNet-v2.
Road traffic accidents represent a leading cause of mortality globally, with incidence rates rising due to increasing population, urbanization, and motorization. Rising accident rates raise concerns about traffic surveillance effectiveness. Traditional computer vision methods for accident detection struggle with limited spatiotemporal understanding and poor cross-domain generalization. Recent advances in transformer architectures excel at modeling global spatial-temporal dependencies and parallel computation. However, applying these models to automated traffic accident detection is limited by small, non-diverse datasets, hindering the development of robust, generalizable systems. To address this gap, we curated a comprehensive and balanced dataset that captures a wide spectrum of traffic environments, accident types, and contextual variations. Utilizing the curated dataset, we propose an accident detection model based on a transformer architecture using pre-extracted spatial video features. The architecture employs convolutional layers to extract local correlations across diverse patterns within a frame, while leveraging transformers to capture sequential-temporal dependencies among the retrieved features. Moreover, most existing studies neglect the integration of motion cues, which are essential for understanding dynamic scenes, especially during accidents. These approaches typically rely on static features or coarse temporal information. In this study, multiple methods for incorporating motion cues were evaluated to identify the most effective strategy. Among the tested input approaches, concatenating RGB features with optical flow achieved the highest accuracy at 88.3%. The results were further compared with vision language models (VLM) such as GPT, Gemini, and LLaVA-NeXT-Video to assess the effectiveness of the proposed method.
Although significant advances have been achieved in SAR land-cover classification, recent methods remain predominantly focused on supervised learning, which relies heavily on extensive labeled datasets. This dependency not only limits scalability and generalization but also restricts adaptability to diverse application scenarios. In this paper, a general-purpose foundation model for SAR land-cover classification is developed, serving as a robust cornerstone to accelerate the development and deployment of various downstream models. Specifically, a Dynamic Instance and Contour Consistency Contrastive Learning (DI3CL) pre-training framework is presented, which incorporates a Dynamic Instance (DI) module and a Contour Consistency (CC) module. DI module enhances global contextual awareness by enforcing local consistency across different views of the same region. CC module leverages shallow feature maps to guide the model to focus on the geometric contours of SAR land-cover objects, thereby improving structural discrimination. Additionally, to enhance robustness and generalization during pre-training, a large-scale and diverse dataset named SARSense, comprising 460,532 SAR images, is constructed to enable the model to capture comprehensive and representative features. To evaluate the generalization capability of our foundation model, we conducted extensive experiments across a variety of SAR land-cover classification tasks, including SAR land-cover mapping, water body detection, and road extraction. The results consistently demonstrate that the proposed DI3CL outperforms existing methods. Our code and pre-trained weights are publicly available at: https://github.com/SARpre-train/DI3CL.
As more autonomous vehicles operate on public roads, understanding real-world behavior of autonomous vehicles is critical to analyzing traffic safety, making policies, and public acceptance. This paper proposes SVBRD-LLM, a framework that automatically discovers, verifies, and applies interpretable behavioral rules from real traffic videos through zero-shot prompt engineering. The framework extracts vehicle trajectories using YOLOv8 and ByteTrack, computes kinematic features, and employs GPT-5 zero-shot prompting to compare autonomous and human-driven vehicles, generating 35 structured behavioral rule hypotheses. These rules are tested on a validation set, iteratively refined based on failure cases to filter spurious correlations, and compiled into a high-confidence rule library. The framework is evaluated on an independent test set for speed change prediction, lane change prediction, and autonomous vehicle identification tasks. Experiments on over 1500 hours of real traffic videos show that the framework achieves 90.0% accuracy and 93.3% F1-score in autonomous vehicle identification. The discovered rules clearly reveal distinctive characteristics of autonomous vehicles in speed control smoothness, lane change conservativeness, and acceleration stability, with each rule accompanied by semantic description, applicable context, and validation confidence.