Retrieval-augmented generation (RAG) has become a key paradigm for knowledge-intensive question answering. However, existing multi-hop RAG systems remain inefficient, as they alternate between retrieval and reasoning at each step, resulting in repeated LLM calls, high token consumption, and unstable entity grounding across hops. We propose CompactRAG, a simple yet effective framework that decouples offline corpus restructuring from online reasoning. In the offline stage, an LLM reads the corpus once and converts it into an atomic QA knowledge base, which represents knowledge as minimal, fine-grained question-answer pairs. In the online stage, complex queries are decomposed and carefully rewritten to preserve entity consistency, and are resolved through dense retrieval followed by RoBERTa-based answer extraction. Notably, during inference, the LLM is invoked only twice in total - once for sub-question decomposition and once for final answer synthesis - regardless of the number of reasoning hops. Experiments on HotpotQA, 2WikiMultiHopQA, and MuSiQue demonstrate that CompactRAG achieves competitive accuracy while substantially reducing token consumption compared to iterative RAG baselines, highlighting a cost-efficient and practical approach to multi-hop reasoning over large knowledge corpora. The implementation is available at GitHub.
Vision and language models (VLMs) are expected to analyse complex documents, such as those containing flowcharts, through a question-answering (QA) interface. The ability to recognise and interpret these flowcharts is in high demand, as they provide valuable insights unavailable in text-only explanations. However, developing VLMs with precise flowchart understanding requires large-scale datasets of flowchart images and corresponding text, the creation of which is highly time-consuming. To address this challenge, we introduce JSynFlow, a synthesised visual QA dataset for Japanese flowcharts, generated using large language models (LLMs). Our dataset comprises task descriptions for various business occupations, the corresponding flowchart images rendered from domain-specific language (DSL) code, and related QA pairs. This paper details the dataset's synthesis procedure and demonstrates that fine-tuning with JSynFlow significantly improves VLM performance on flowchart-based QA tasks. Our dataset is publicly available at https://huggingface.co/datasets/jri-advtechlab/jsynflow.
Retrieval-augmented generation (RAG) promises grounded question answering, yet domain settings with multiple heterogeneous knowledge bases (KBs) remain challenging. In Chinese Tibetan medicine, encyclopedia entries are often dense and easy to match, which can dominate retrieval even when classics or clinical papers provide more authoritative evidence. We study a practical setting with three KBs (encyclopedia, classics, and clinical papers) and a 500-query benchmark (cutoff $K{=}5$) covering both single-KB and cross-KB questions. We propose two complementary methods to improve traceability, reduce hallucinations, and enable cross-KB verification. First, DAKS performs KB routing and budgeted retrieval to mitigate density-driven bias and to prioritize authoritative sources when appropriate. Second, we use an alignment graph to guide evidence fusion and coverage-aware packing, improving cross-KB evidence coverage without relying on naive concatenation. All answers are generated by a lightweight generator, \textsc{openPangu-Embedded-7B}. Experiments show consistent gains in routing quality and cross-KB evidence coverage, with the full system achieving the best CrossEv@5 while maintaining strong faithfulness and citation correctness.
Large Language Models (LLMs) excel at language understanding but remain limited in knowledge-intensive domains due to hallucinations, outdated information, and limited explainability. Text-based retrieval-augmented generation (RAG) helps ground model outputs in external sources but struggles with multi-hop reasoning. Knowledge Graphs (KGs), in contrast, support precise, explainable querying, yet require a knowledge of query languages. This work introduces an interactive framework in which LLMs generate and explain Cypher graph queries and users iteratively refine them through natural language. Applied to real-world KGs, the framework improves accessibility to complex datasets while preserving factual accuracy and semantic rigor and provides insight into how model performance varies across domains. Our core quantitative evaluation is a 90-query benchmark on a synthetic movie KG that measures query explanation quality and fault detection across multiple LLMs, complemented by two smaller real-life query-generation experiments on a Hyena KG and the MaRDI (Mathematical Research Data Initiative) KG.
To complete assignments provided by humans in natural language, robots must interpret commands, generate and answer relevant questions for scene understanding, and manipulate target objects. Real-world deployments often require multiple heterogeneous robots with different manipulation capabilities to handle different assignments cooperatively. Beyond the need for specialized manipulation skills, effective information gathering is important in completing these assignments. To address this component of the problem, we formalize the information-gathering process in a fully cooperative setting as an underexplored multi-agent multi-task Embodied Question Answering (MM-EQA) problem, which is a novel extension of canonical Embodied Question Answering (EQA), where effective communication is crucial for coordinating efforts without redundancy. To address this problem, we propose CommCP, a novel LLM-based decentralized communication framework designed for MM-EQA. Our framework employs conformal prediction to calibrate the generated messages, thereby minimizing receiver distractions and enhancing communication reliability. To evaluate our framework, we introduce an MM-EQA benchmark featuring diverse, photo-realistic household scenarios with embodied questions. Experimental results demonstrate that CommCP significantly enhances the task success rate and exploration efficiency over baselines. The experiment videos, code, and dataset are available on our project website: https://comm-cp.github.io.
In recent years, Large Language Models (LLMs) have become widely used in medical applications, such as clinical decision support, medical education, and medical question answering. Yet, these models are often English-centric, limiting their robustness and reliability for linguistically diverse communities. Recent work has highlighted discrepancies in performance in low-resource languages for various medical tasks, but the underlying causes remain poorly understood. In this study, we conduct a cross-lingual empirical analysis of LLM performance on Arabic and English medical question and answering. Our findings reveal a persistent language-driven performance gap that intensifies with increasing task complexity. Tokenization analysis exposes structural fragmentation in Arabic medical text, while reliability analysis suggests that model-reported confidence and explanations exhibit limited correlation with correctness. Together, these findings underscore the need for language-aware design and evaluation strategies in LLMs for medical tasks.
To assess the ability of current AI systems to correctly answer research-level mathematics questions, we share a set of ten math questions which have arisen naturally in the research process of the authors. The questions had not been shared publicly until now; the answers are known to the authors of the questions but will remain encrypted for a short time.
Temporal knowledge graph question answering (TKGQA) aims to answer time-sensitive questions by leveraging temporal knowledge bases. While Large Language Models (LLMs) demonstrate significant potential in TKGQA, current prompting strategies constrain their efficacy in two primary ways. First, they are prone to reasoning hallucinations under complex temporal constraints. Second, static prompting limits model autonomy and generalization, as it lack optimization through dynamic interaction with temporal knowledge graphs (TKGs) environments. To address these limitations, we propose \textbf{TKG-Thinker}, a novel agent equipped with autonomous planning and adaptive retrieval capabilities for reasoning over TKGs. Specifically, TKG-Thinker performs in-depth temporal reasoning through dynamic multi-turn interactions with TKGs via a dual-training strategy. We first apply Supervised Fine-Tuning (SFT) with chain-of thought data to instill core planning capabilities, followed by a Reinforcement Learning (RL) stage that leverages multi-dimensional rewards to refine reasoning policies under intricate temporal constraints. Experimental results on benchmark datasets with three open-source LLMs show that TKG-Thinker achieves state-of-the-art performance and exhibits strong generalization across complex TKGQA settings.
Retrieval Augmented Generation (RAG) is a highly effective paradigm for keeping LLM-based responses up-to-date and reducing the likelihood of hallucinations. Yet, RAG was recently shown to be quite vulnerable to corpus knowledge poisoning: an attacker injects misleading documents to the corpus to steer an LLM's output to an undesired response. We argue that the standard causal attention mechanism in LLMs enables harmful cross-document interactions, specifically in cases of attacks. Accordingly, we introduce a novel defense approach for RAG: Sparse Document Attention RAG (SDAG). This is a block-sparse attention mechanism that disallows cross-attention between retrieved documents. SDAG requires a minimal inference-time change to the attention mask; furthermore, no fine-tuning or additional architectural changes are needed. We present an empirical evaluation of LLM-based question answering (QA) with a variety of attack strategies on RAG. We show that our SDAG method substantially outperforms the standard causal attention mechanism in terms of attack success rate. We further demonstrate the clear merits of integrating SDAG with state-of-the-art RAG defense methods. Specifically, the integration results in performance that is statistically significantly better than the state-of-the-art.
Domain specific large language models are increasingly used to support patient education, triage, and clinical decision making in ophthalmology, making rigorous evaluation essential to ensure safety and accuracy. This study evaluated four small medical LLMs Meerkat-7B, BioMistral-7B, OpenBioLLM-8B, and MedLLaMA3-v20 in answering ophthalmology related patient queries and assessed the feasibility of LLM based evaluation against clinician grading. In this cross sectional study, 180 ophthalmology patient queries were answered by each model, generating 2160 responses. Models were selected for parameter sizes under 10 billion to enable resource efficient deployment. Responses were evaluated by three ophthalmologists of differing seniority and by GPT-4-Turbo using the S.C.O.R.E. framework assessing safety, consensus and context, objectivity, reproducibility, and explainability, with ratings assigned on a five point Likert scale. Agreement between LLM and clinician grading was assessed using Spearman rank correlation, Kendall tau statistics, and kernel density estimate analyses. Meerkat-7B achieved the highest performance with mean scores of 3.44 from Senior Consultants, 4.08 from Consultants, and 4.18 from Residents. MedLLaMA3-v20 performed poorest, with 25.5 percent of responses containing hallucinations or clinically misleading content, including fabricated terminology. GPT-4-Turbo grading showed strong alignment with clinician assessments overall, with Spearman rho of 0.80 and Kendall tau of 0.67, though Senior Consultants graded more conservatively. Overall, medical LLMs demonstrated potential for safe ophthalmic question answering, but gaps remained in clinical depth and consensus, supporting the feasibility of LLM based evaluation for large scale benchmarking and the need for hybrid automated and clinician review frameworks to guide safe clinical deployment.