Traditional ontologies excel at describing domain structure but cannot generate novel artifacts. Large language models generate fluently but produce outputs that lack structural validity, hallucinating mechanisms without components, goals without end conditions. We introduce Generative Ontology, a framework that synthesizes these complementary strengths: ontology provides the grammar; the LLM provides the creativity. Generative Ontology encodes domain knowledge as executable Pydantic schemas that constrain LLM generation via DSPy signatures. A multi-agent pipeline assigns specialized roles to different ontology domains: a Mechanics Architect designs game systems, a Theme Weaver integrates narrative, a Balance Critic identifies exploits. Each agent carrying a professional "anxiety" that prevents shallow, agreeable outputs. Retrieval-augmented generation grounds novel designs in precedents from existing exemplars, while iterative validation ensures coherence between mechanisms and components. We demonstrate the framework through GameGrammar, a system for generating complete tabletop game designs. Given a thematic prompt ("bioluminescent fungi competing in a cave ecosystem"), the pipeline produces structurally complete, playable game specifications with mechanisms, components, victory conditions, and setup instructions. These outputs satisfy ontological constraints while remaining genuinely creative. The pattern generalizes beyond games. Any domain with expert vocabulary, validity constraints, and accumulated exemplars (music composition, software architecture, culinary arts) is a candidate for Generative Ontology. We argue that constraints do not limit creativity but enable it: just as grammar makes poetry possible, ontology makes structured generation possible.
Current audio foundation models typically rely on rigid, task-specific supervision, addressing isolated factors of audio rather than the whole. In contrast, human intelligence processes audio holistically, seamlessly bridging physical signals with abstract cognitive concepts to execute complex tasks. Grounded in this philosophy, we introduce Bagpiper, an 8B audio foundation model that interprets physical audio via rich captions, i.e., comprehensive natural language descriptions that encapsulate the critical cognitive concepts inherent in the signal (e.g., transcription, audio events). By pre-training on a massive corpus of 600B tokens, the model establishes a robust bidirectional mapping between raw audio and this high-level conceptual space. During fine-tuning, Bagpiper adopts a caption-then-process workflow, simulating an intermediate cognitive reasoning step to solve diverse tasks without task-specific priors. Experimentally, Bagpiper outperforms Qwen-2.5-Omni on MMAU and AIRBench for audio understanding and surpasses CosyVoice3 and TangoFlux in generation quality, capable of synthesizing arbitrary compositions of speech, music, and sound effects. To the best of our knowledge, Bagpiper is among the first works that achieve unified understanding generation for general audio. Model, data, and code are available at Bagpiper Home Page.
Audio-visual video highlight detection aims to automatically identify the most salient moments in videos by leveraging both visual and auditory cues. However, existing models often underutilize the audio modality, focusing on high-level semantic features while failing to fully leverage the rich, dynamic characteristics of sound. To address this limitation, we propose a novel framework, Dual-Pathway Audio Encoders for Video Highlight Detection (DAViHD). The dual-pathway audio encoder is composed of a semantic pathway for content understanding and a dynamic pathway that captures spectro-temporal dynamics. The semantic pathway extracts high-level information by identifying the content within the audio, such as speech, music, or specific sound events. The dynamic pathway employs a frequency-adaptive mechanism as time evolves to jointly model these dynamics, enabling it to identify transient acoustic events via salient spectral bands and rapid energy changes. We integrate the novel audio encoder into a full audio-visual framework and achieve new state-of-the-art performance on the large-scale MrHiSum benchmark. Our results demonstrate that a sophisticated, dual-faceted audio representation is key to advancing the field of highlight detection.
Music captioning, or the task of generating a natural language description of music, is useful for both music understanding and controllable music generation. Training captioning models, however, typically requires high-quality music caption data which is scarce compared to metadata (e.g., genre, mood, etc.). As a result, it is common to use large language models (LLMs) to synthesize captions from metadata to generate training data for captioning models, though this process imposes a fixed stylization and entangles factual information with natural language style. As a more direct approach, we propose metadata-based captioning. We train a metadata prediction model to infer detailed music metadata from audio and then convert it into expressive captions via pre-trained LLMs at inference time. Compared to a strong end-to-end baseline trained on LLM-generated captions derived from metadata, our method: (1) achieves comparable performance in less training time over end-to-end captioners, (2) offers flexibility to easily change stylization post-training, enabling output captions to be tailored to specific stylistic and quality requirements, and (3) can be prompted with audio and partial metadata to enable powerful metadata imputation or in-filling--a common task for organizing music data.
Music understanding is a complex task that often requires reasoning over both structural and semantic elements of audio. We introduce BASS, designed to evaluate music understanding and reasoning in audio language models across four broad categories: structural segmentation, lyric transcription, musicological analysis, and artist collaboration. BASS comprises 2658 questions spanning 12 tasks, 1993 unique songs and covering over 138 hours of music from a wide range of genres and tracks, crafted to assess musicological knowledge and reasoning in real-world scenarios. We evaluate 14 open-source and frontier multimodal LMs, finding that even state-of-the-art models struggle on higher-level reasoning tasks such as structural segmentation and artist collaboration, while performing best on lyric transcription. Our analysis reveals that current models leverage linguistic priors effectively but remain limited in reasoning over musical structure, vocal, and musicological attributes. BASS provides an evaluation framework with widespread applications in music recommendation and search and has the potential to guide the development of audio LMs.
Generating piano accompaniments in the symbolic music domain is a challenging task that requires producing a complete piece of piano music from given melody and chord constraints, such as those provided by a lead sheet. In this paper, we propose a discrete diffusion-based piano accompaniment generation model, D3PIA, leveraging local alignment between lead sheet and accompaniment in piano-roll representation. D3PIA incorporates Neighborhood Attention (NA) to both encode the lead sheet and condition it for predicting note states in the piano accompaniment. This design enhances local contextual modeling by efficiently attending to nearby melody and chord conditions. We evaluate our model using the POP909 dataset, a widely used benchmark for piano accompaniment generation. Objective evaluation results demonstrate that D3PIA preserves chord conditions more faithfully compared to continuous diffusion-based and Transformer-based baselines. Furthermore, a subjective listening test indicates that D3PIA generates more musically coherent accompaniments than the comparison models.
Audio is a fundamental modality for analyzing speech, music, and environmental sounds. Although pretrained audio models have significantly advanced audio understanding, they remain fragile in real-world settings where data distributions shift over time. In this work, we present the first systematic benchmark for audio continual learning (CL) with pretrained models (PTMs), together with a comprehensive analysis of its unique challenges. Unlike in vision, where parameter-efficient fine-tuning (PEFT) has proven effective for CL, directly transferring such strategies to audio leads to poor performance. This stems from a fundamental property of audio backbones: they focus on low-level spectral details rather than structured semantics, causing severe upstream-downstream misalignment. Through extensive empirical study, we identify analytic classifiers with first-session adaptation (FSA) as a promising direction, but also reveal two major limitations: representation saturation in coarse-grained scenarios and representation drift in fine-grained scenarios. To address these challenges, we propose PACE, a novel method that enhances FSA via a regularized analytic classifier and enables multi-session adaptation through adaptive subspace-orthogonal PEFT for improved semantic alignment. In addition, we introduce spectrogram-based boundary-aware perturbations to mitigate representation overlap and improve stability. Experiments on six diverse audio CL benchmarks demonstrate that PACE substantially outperforms state-of-the-art baselines, marking an important step toward robust and scalable audio continual learning with PTMs.
The rise of music large language models (LLMs) demands robust methods of evaluating output quality, especially in distinguishing high-quality compositions from "garbage music". Curiously, we observe that the standard cross-entropy loss -- a core training metric -- often decrease when models encounter systematically corrupted music, undermining its validity as a standalone quality indicator. To investigate this paradox, we introduce noise injection experiment, where controlled noise signal of varying lengths are injected into musical contexts. We hypothesize that a model's loss reacting positively to these perturbations, specifically a sharp increase ("Peak" area) for short injection, can serve as a proxy for its ability to discern musical integrity. Experiments with MusicGen models in the audio waveform domain confirm that Music LLMs respond more strongly to local, texture-level disruptions than to global semantic corruption. Beyond exposing this bias, our results highlight a new principle: the shape of the loss curve -- rather than its absolute value -- encodes critical information about the quality of the generated content (i.e., model behavior). We envision this profile-based evaluation as a label-free, model-intrinsic framework for assessing musical quality -- opening the door to more principled training objectives and sharper benchmarks.
This paper introduces TRAILDREAMS, a framework that uses a large language model (LLM) to automate the production of movie trailers. The purpose of LLM is to select key visual sequences and impactful dialogues, and to help TRAILDREAMS to generate audio elements such as music and voiceovers. The goal is to produce engaging and visually appealing trailers efficiently. In comparative evaluations, TRAILDREAMS surpasses current state-of-the-art trailer generation methods in viewer ratings. However, it still falls short when compared to real, human-crafted trailers. While TRAILDREAMS demonstrates significant promise and marks an advancement in automated creative processes, further improvements are necessary to bridge the quality gap with traditional trailers.
Large language models (LLMs) enable powerful zero-shot recommendations by leveraging broad contextual knowledge, yet predictive uncertainty and embedded biases threaten reliability and fairness. This paper studies how uncertainty and fairness evaluations affect the accuracy, consistency, and trustworthiness of LLM-generated recommendations. We introduce a benchmark of curated metrics and a dataset annotated for eight demographic attributes (31 categorical values) across two domains: movies and music. Through in-depth case studies, we quantify predictive uncertainty (via entropy) and demonstrate that Google DeepMind's Gemini 1.5 Flash exhibits systematic unfairness for certain sensitive attributes; measured similarity-based gaps are SNSR at 0.1363 and SNSV at 0.0507. These disparities persist under prompt perturbations such as typographical errors and multilingual inputs. We further integrate personality-aware fairness into the RecLLM evaluation pipeline to reveal personality-linked bias patterns and expose trade-offs between personalization and group fairness. We propose a novel uncertainty-aware evaluation methodology for RecLLMs, present empirical insights from deep uncertainty case studies, and introduce a personality profile-informed fairness benchmark that advances explainability and equity in LLM recommendations. Together, these contributions establish a foundation for safer, more interpretable RecLLMs and motivate future work on multi-model benchmarks and adaptive calibration for trustworthy deployment.