Multivariate Time Series Forecasting


Multivariate time series forecasting is the process of predicting future values of multiple time series data.

PRISM: A hierarchical multiscale approach for time series forecasting

Add code
Dec 31, 2025
Viaarxiv icon

Causality-Inspired Safe Residual Correction for Multivariate Time Series

Add code
Dec 27, 2025
Viaarxiv icon

DecoKAN: Interpretable Decomposition for Forecasting Cryptocurrency Market Dynamics

Add code
Dec 23, 2025
Viaarxiv icon

Guardrailed Elasticity Pricing: A Churn-Aware Forecasting Playbook for Subscription Strategy

Add code
Dec 24, 2025
Viaarxiv icon

Adaptive Information Routing for Multimodal Time Series Forecasting

Add code
Dec 23, 2025
Viaarxiv icon

SEED: Spectral Entropy-Guided Evaluation of SpatialTemporal Dependencies for Multivariate Time Series Forecasting

Add code
Dec 18, 2025
Viaarxiv icon

A lightweight Spatial-Temporal Graph Neural Network for Long-term Time Series Forecasting

Add code
Dec 19, 2025
Viaarxiv icon

FADTI: Fourier and Attention Driven Diffusion for Multivariate Time Series Imputation

Add code
Dec 17, 2025
Viaarxiv icon

Pattern-Guided Diffusion Models

Add code
Dec 15, 2025
Viaarxiv icon

Weighted Contrastive Learning for Anomaly-Aware Time-Series Forecasting

Add code
Dec 08, 2025
Viaarxiv icon