Atypical Parkinsonian Disorders (APD), also known as Parkinson-plus syndrome, are a group of neurodegenerative diseases that include progressive supranuclear palsy (PSP) and multiple system atrophy (MSA). In the early stages, overlapping clinical features often lead to misdiagnosis as Parkinson's disease (PD). Identifying reliable imaging biomarkers for early differential diagnosis remains a critical challenge. In this study, we propose a hybrid framework combining convolutional neural networks (CNNs) with machine learning (ML) techniques to classify APD subtypes versus PD and distinguish between the subtypes themselves: PSP vs. PD, MSA vs. PD, and PSP vs. MSA. The model leverages multi-modal input data, including T1-weighted magnetic resonance imaging (MRI), segmentation masks of 12 deep brain structures associated with APD, and their corresponding volumetric measurements. By integrating these complementary modalities, including image data, structural segmentation masks, and quantitative volume features, the hybrid approach achieved promising classification performance with area under the curve (AUC) scores of 0.95 for PSP vs. PD, 0.86 for MSA vs. PD, and 0.92 for PSP vs. MSA. These results highlight the potential of combining spatial and structural information for robust subtype differentiation. In conclusion, this study demonstrates that fusing CNN-based image features with volume-based ML inputs improves classification accuracy for APD subtypes. The proposed approach may contribute to more reliable early-stage diagnosis, facilitating timely and targeted interventions in clinical practice.
Radiological analysis increasingly benefits from pretrained visual representations that can support heterogeneous downstream tasks across imaging modalities. In this work, we introduce OmniRad, a self-supervised radiological foundation model pretrained on 1.2 million medical images, designed with radiology-inspired principles emphasizing representation reuse and cross-task transferability. We evaluate the pretrained encoder under multiple downstream adaptation regimes, including lightweight task-specific adapters with a frozen backbone as well as full end-to-end fine-tuning for classification, allowing us to assess both representation quality and task-specific performance. OmniRad is evaluated on a broad suite of public benchmarks spanning classification and segmentation across multiple modalities. On the MedMNISTv2 collection, OmniRad improves classification F1 by up to 2.05% over competing foundation models. For dense prediction, OmniRad attains mean Dice score improvements across six MedSegBench datasets when using frozen representations. Qualitative analyses and latent-space visualizations suggest improved feature clustering and modality-related separation.
Retinal diseases spanning a broad spectrum can be effectively identified and diagnosed using complementary signals from multimodal data. However, multimodal diagnosis in ophthalmic practice is typically challenged in terms of data heterogeneity, potential invasiveness, registration complexity, and so on. As such, a unified framework that integrates multimodal data synthesis and fusion is proposed for retinal disease classification and grading. Specifically, the synthesized multimodal data incorporates fundus fluorescein angiography (FFA), multispectral imaging (MSI), and saliency maps that emphasize latent lesions as well as optic disc/cup regions. Parallel models are independently trained to learn modality-specific representations that capture cross-pathophysiological signatures. These features are then adaptively calibrated within and across modalities to perform information pruning and flexible integration according to downstream tasks. The proposed learning system is thoroughly interpreted through visualizations in both image and feature spaces. Extensive experiments on two public datasets demonstrated the superiority of our approach over state-of-the-art ones in the tasks of multi-label classification (F1-score: 0.683, AUC: 0.953) and diabetic retinopathy grading (Accuracy:0.842, Kappa: 0.861). This work not only enhances the accuracy and efficiency of retinal disease screening but also offers a scalable framework for data augmentation across various medical imaging modalities.
Autonomous vehicles (AVs) rely on multi-modal fusion for safety, but current visual and optical sensors fail to detect road-induced excitations which are critical for vehicles' dynamic control. Inspired by human synesthesia, we propose the Synesthesia of Vehicles (SoV), a novel framework to predict tactile excitations from visual inputs for autonomous vehicles. We develop a cross-modal spatiotemporal alignment method to address temporal and spatial disparities. Furthermore, a visual-tactile synesthetic (VTSyn) generative model using latent diffusion is proposed for unsupervised high-quality tactile data synthesis. A real-vehicle perception system collected a multi-modal dataset across diverse road and lighting conditions. Extensive experiments show that VTSyn outperforms existing models in temporal, frequency, and classification performance, enhancing AV safety through proactive tactile perception.
Foundation models for echocardiography promise to reduce annotation burden and improve diagnostic consistency by learning generalizable representations from large unlabeled video archives. However, current approaches fail to disentangle anatomical signal from the stochastic speckle and acquisition artifacts that dominate ultrasound imagery. We present EchoJEPA, a foundation model for echocardiography trained on 18 million echocardiograms across 300K patients, the largest pretraining corpus for this modality to date. We also introduce a novel multi-view probing framework with factorized stream embeddings that standardizes evaluation under frozen backbones. Compared to prior methods, EchoJEPA reduces left ventricular ejection fraction estimation error by 19% and achieves 87.4% view classification accuracy. EchoJEPA exhibits strong sample efficiency, reaching 78.6% accuracy with only 1% of labeled data versus 42.1% for the best baseline trained on 100%. Under acoustic perturbations, EchoJEPA degrades by only 2.3% compared to 16.8% for the next best model, and transfers zero-shot to pediatric patients with 15% lower error than the next best model, outperforming all fine-tuned baselines. These results establish latent prediction as a superior paradigm for ultrasound foundation models.
Accurate antenna affiliation identification is crucial for optimizing and maintaining communication networks. Current practice, however, relies on the cumbersome and error-prone process of manual tower inspections. We propose a novel paradigm shift that fuses video footage of base stations, antenna geometric features, and Physical Cell Identity (PCI) signals, transforming antenna affiliation identification into multi-modal classification and matching tasks. Publicly available pretrained transformers struggle with this unique task due to a lack of analogous data in the communications domain, which hampers cross-modal alignment. To address this, we introduce a dedicated training framework that aligns antenna images with corresponding PCI signals. To tackle the representation alignment challenge, we propose a novel Token Entropy Regularization module in the pretraining stage. Our experiments demonstrate that TER accelerates convergence and yields significant performance gains. Further analysis reveals that the entropy of the first token is modality-dependent. Code will be made available upon publication.
Deep learning has been successful in predicting neurodegenerative disorders, such as Alzheimer's disease, from magnetic resonance imaging (MRI). Combining multiple imaging modalities, such as T1-weighted (T1) and diffusion-weighted imaging (DWI) scans, can increase diagnostic performance. However, complete multimodal datasets are not always available. We use a conditional denoising diffusion probabilistic model to impute missing DWI scans from T1 scans. We perform extensive experiments to evaluate whether such imputation improves the accuracy of uni-modal and bi-modal deep learning models for 3-way Alzheimer's disease classification-cognitively normal, mild cognitive impairment, and Alzheimer's disease. We observe improvements in several metrics, particularly those sensitive to minority classes, for several imputation configurations.
Emergent communication offers insight into how agents develop shared structured representations, yet most research assumes homogeneous modalities or aligned representational spaces, overlooking the perceptual heterogeneity of real-world settings. We study a heterogeneous multi-step binary communication game where agents differ in modality and lack perceptual grounding. Despite perceptual misalignment, multimodal systems converge to class-consistent messages grounded in perceptual input. Unimodal systems communicate more efficiently, using fewer bits and achieving lower classification entropy, while multimodal agents require greater information exchange and exhibit higher uncertainty. Bit perturbation experiments provide strong evidence that meaning is encoded in a distributional rather than compositional manner, as each bit's contribution depends on its surrounding pattern. Finally, interoperability analyses show that systems trained in different perceptual worlds fail to directly communicate, but limited fine-tuning enables successful cross-system communication. This work positions emergent communication as a framework for studying how agents adapt and transfer representations across heterogeneous modalities, opening new directions for both theory and experimentation.
Multimodal Attributed Graphs (MAGs) have been widely adopted for modeling complex systems by integrating multi-modal information, such as text and images, on nodes. However, we identify a discrepancy between the implicit semantic structure induced by different modality embeddings and the explicit graph structure. For instance, neighbors in the explicit graph structure may be close in one modality but distant in another. Since existing methods typically perform message passing over the fixed explicit graph structure, they inadvertently aggregate dissimilar features, introducing modality-specific noise and impeding effective node representation learning. To address this, we propose OptiMAG, an Unbalanced Optimal Transport-based regularization framework. OptiMAG employs the Fused Gromov-Wasserstein distance to explicitly guide cross-modal structural consistency within local neighborhoods, effectively mitigating structural-semantic conflicts. Moreover, a KL divergence penalty enables adaptive handling of cross-modal inconsistencies. This framework can be seamlessly integrated into existing multimodal graph models, acting as an effective drop-in regularizer. Experiments demonstrate that OptiMAG consistently outperforms baselines across multiple tasks, ranging from graph-centric tasks (e.g., node classification, link prediction) to multimodal-centric generation tasks (e.g., graph2text, graph2image). The source code will be available upon acceptance.
Medical image classification is a core task in computer-aided diagnosis (CAD), playing a pivotal role in early disease detection, treatment planning, and patient prognosis assessment. In ophthalmic practice, fluorescein fundus angiography (FFA) and indocyanine green angiography (ICGA) provide hemodynamic and lesion-structural information that conventional fundus photography cannot capture. However, due to the single-modality nature, subtle lesion patterns, and significant inter-device variability, existing methods still face limitations in generalization and high-confidence prediction. To address these challenges, we propose CLEAR-Mamba, an enhanced framework built upon MedMamba with optimizations in both architecture and training strategy. Architecturally, we introduce HaC, a hypernetwork-based adaptive conditioning layer that dynamically generates parameters according to input feature distributions, thereby improving cross-domain adaptability. From a training perspective, we develop RaP, a reliability-aware prediction scheme built upon evidential uncertainty learning, which encourages the model to emphasize low-confidence samples and improves overall stability and reliability. We further construct a large-scale ophthalmic angiography dataset covering both FFA and ICGA modalities, comprising multiple retinal disease categories for model training and evaluation. Experimental results demonstrate that CLEAR-Mamba consistently outperforms multiple baseline models, including the original MedMamba, across various metrics-showing particular advantages in multi-disease classification and reliability-aware prediction. This study provides an effective solution that balances generalizability and reliability for modality-specific medical image classification tasks.