Abstract:Road terrains play a crucial role in ensuring the driving safety of autonomous vehicles (AVs). However, existing sensors of AVs, including cameras and Lidars, are susceptible to variations in lighting and weather conditions, making it challenging to achieve real-time perception of road conditions. In this paper, we propose an illumination-aware multi-modal fusion network (IMF), which leverages both exteroceptive and proprioceptive perception and optimizes the fusion process based on illumination features. We introduce an illumination-perception sub-network to accurately estimate illumination features. Moreover, we design a multi-modal fusion network which is able to dynamically adjust weights of different modalities according to illumination features. We enhance the optimization process by pre-training of the illumination-perception sub-network and incorporating illumination loss as one of the training constraints. Extensive experiments demonstrate that the IMF shows a superior performance compared to state-of-the-art methods. The comparison results with single modality perception methods highlight the comprehensive advantages of multi-modal fusion in accurately perceiving road terrains under varying lighting conditions. Our dataset is available at: https://github.com/lindawang2016/IMF.
Abstract:In recent years, videos and images in 720p (HD), 1080p (FHD) and 4K (UHD) resolution have become more popular for display devices such as TVs, mobile phones and VR. However, these high resolution images cannot achieve the expected visual effect due to the limitation of the internet bandwidth, and bring a great challenge for super-resolution networks to achieve real-time performance. Following this challenge, we explore multiple efficient network designs, such as pixel-unshuffle, repeat upscaling, and local skip connection removal, and propose a fast and lightweight super-resolution network. Furthermore, by analyzing the applications of the idea of divide-and-conquer in super-resolution, we propose assembled convolutions which can adapt convolution kernels according to the input features. Experiments suggest that our method outperforms all the state-of-the-art efficient super-resolution models, and achieves optimal results in terms of runtime and quality. In addition, our method also wins the first place in NTIRE 2023 Real-Time Super-Resolution - Track 1 ($\times$2). The code will be available at https://gitee.com/mindspore/models/tree/master/research/cv/AsConvSR