Multi-agent reinforcement learning is the process of training multiple agents to interact and collaborate in a shared environment.
AI researchers have long focused on poker-like games as a testbed for environments characterized by multi-player dynamics, imperfect information, and reasoning under uncertainty. While recent breakthroughs have matched elite human play at no-limit Texas hold'em, the multi-player dynamics are subdued: most hands converge quickly with only two players engaged through multiple rounds of bidding. In this paper, we present Solly, the first AI agent to achieve elite human play in reduced-format Liar's Poker, a game characterized by extensive multi-player engagement. We trained Solly using self-play with a model-free, actor-critic, deep reinforcement learning algorithm. Solly played at an elite human level as measured by win rate (won over 50% of hands) and equity (money won) in heads-up and multi-player Liar's Poker. Solly also outperformed large language models (LLMs), including those with reasoning abilities, on the same metrics. Solly developed novel bidding strategies, randomized play effectively, and was not easily exploitable by world-class human players.
Analog/mixed-signal circuits are key for interfacing electronics with the physical world. Their design, however, remains a largely handcrafted process, resulting in long and error-prone design cycles. While the recent rise of AI-based reinforcement learning and generative AI has created new techniques to automate this task, the need for many time-consuming simulations is a critical bottleneck hindering the overall efficiency. Furthermore, the lack of explainability of the resulting design solutions hampers widespread adoption of the tools. To address these issues, a novel agentic AI framework for sample-efficient and explainable analog circuit sizing is presented. It employs a multi-agent workflow where specialized Large Language Model (LLM)-based agents collaborate to interpret the circuit topology, to understand the design goals, and to iteratively refine the circuit's design parameters towards the target goals with human-interpretable reasoning. The adaptive simulation strategy creates an intelligent control that yields a high sample efficiency. The AnaFlow framework is demonstrated for two circuits of varying complexity and is able to complete the sizing task fully automatically, differently from pure Bayesian optimization and reinforcement learning approaches. The system learns from its optimization history to avoid past mistakes and to accelerate convergence. The inherent explainability makes this a powerful tool for analog design space exploration and a new paradigm in analog EDA, where AI agents serve as transparent design assistants.
In the rapidly evolving field of multi-agent reinforcement learning (MARL), understanding the dynamics of open systems is crucial. Openness in MARL refers to the dynam-ic nature of agent populations, tasks, and agent types with-in a system. Specifically, there are three types of openness as reported in (Eck et al. 2023) [2]: agent openness, where agents can enter or leave the system at any time; task openness, where new tasks emerge, and existing ones evolve or disappear; and type openness, where the capabil-ities and behaviors of agents change over time. This report provides a conceptual and empirical review, focusing on the interplay between openness and the credit assignment problem (CAP). CAP involves determining the contribution of individual agents to the overall system performance, a task that becomes increasingly complex in open environ-ments. Traditional credit assignment (CA) methods often assume static agent populations, fixed and pre-defined tasks, and stationary types, making them inadequate for open systems. We first conduct a conceptual analysis, in-troducing new sub-categories of openness to detail how events like agent turnover or task cancellation break the assumptions of environmental stationarity and fixed team composition that underpin existing CAP methods. We then present an empirical study using representative temporal and structural algorithms in an open environment. The results demonstrate that openness directly causes credit misattribution, evidenced by unstable loss functions and significant performance degradation.
Cell-free massive multiple-input multiple-output (MIMO) is a key technology for next-generation wireless systems. The integration of cell-free massive MIMO within the open radio access network (O-RAN) architecture addresses the growing need for decentralized, scalable, and high-capacity networks that can support different use cases. Precoding is a crucial step in the operation of cell-free massive MIMO, where O-RUs steer their beams towards the intended users while mitigating interference to other users. Current precoding schemes for cell-free massive MIMO are either fully centralized or fully distributed. Centralized schemes are not scalable, whereas distributed schemes may lead to a high inter-O-RU interference. In this paper, we propose a distributed and scalable precoding framework for cell-free massive MIMO that uses limited information exchange among precoding agents to mitigate interference. We formulate an optimization problem for precoding that maximizes the aggregate throughput while guaranteeing the minimum data rate requirements of users. The formulated problem is nonconvex. We propose a multi-timescale framework that combines multi-agent deep reinforcement learning (DRL) with expert insights from an iterative algorithm to determine the precoding matrices efficiently. We conduct simulations and compare the proposed framework with the centralized precoding and distributed precoding methods for different numbers of O-RUs, users, and transmit antennas. The results show that the proposed framework achieves a higher aggregate throughput than the distributed regularized zero-forcing (D-RZF) scheme and the weighted minimum mean square error (WMMSE) algorithm. When compared with the centralized regularized zero-forcing (C-RZF) scheme, the proposed framework achieves similar aggregate throughput performance but with a lower signaling overhead.
Modelling pedestrian-driver interactions is critical for understanding human road user behaviour and developing safe autonomous vehicle systems. Existing approaches often rely on rule-based logic, game-theoretic models, or 'black-box' machine learning methods. However, these models typically lack flexibility or overlook the underlying mechanisms, such as sensory and motor constraints, which shape how pedestrians and drivers perceive and act in interactive scenarios. In this study, we propose a multi-agent reinforcement learning (RL) framework that integrates both visual and motor constraints of pedestrian and driver agents. Using a real-world dataset from an unsignalised pedestrian crossing, we evaluate four model variants, one without constraints, two with either motor or visual constraints, and one with both, across behavioural metrics of interaction realism. Results show that the combined model with both visual and motor constraints performs best. Motor constraints lead to smoother movements that resemble human speed adjustments during crossing interactions. The addition of visual constraints introduces perceptual uncertainty and field-of-view limitations, leading the agents to exhibit more cautious and variable behaviour, such as less abrupt deceleration. In this data-limited setting, our model outperforms a supervised behavioural cloning model, demonstrating that our approach can be effective without large training datasets. Finally, our framework accounts for individual differences by modelling parameters controlling the human constraints as population-level distributions, a perspective that has not been explored in previous work on pedestrian-vehicle interaction modelling. Overall, our work demonstrates that multi-agent RL with human constraints is a promising modelling approach for simulating realistic road user interactions.
Recently, deep multi-agent reinforcement learning (MARL) has demonstrated promising performance for solving challenging tasks, such as long-term dependencies and non-Markovian environments. Its success is partly attributed to conditioning policies on large fixed context length. However, such large fixed context lengths may lead to limited exploration efficiency and redundant information. In this paper, we propose a novel MARL framework to obtain adaptive and effective contextual information. Specifically, we design a central agent that dynamically optimizes context length via temporal gradient analysis, enhancing exploration to facilitate convergence to global optima in MARL. Furthermore, to enhance the adaptive optimization capability of the context length, we present an efficient input representation for the central agent, which effectively filters redundant information. By leveraging a Fourier-based low-frequency truncation method, we extract global temporal trends across decentralized agents, providing an effective and efficient representation of the MARL environment. Extensive experiments demonstrate that the proposed method achieves state-of-the-art (SOTA) performance on long-term dependency tasks, including PettingZoo, MiniGrid, Google Research Football (GRF), and StarCraft Multi-Agent Challenge v2 (SMACv2).
Large Language Models (LLMs) excel at reasoning and generation but are inherently limited by static pretraining data, resulting in factual inaccuracies and weak adaptability to new information. Retrieval-Augmented Generation (RAG) addresses this issue by grounding LLMs in external knowledge; However, the effectiveness of RAG critically depends on whether the model can adequately access relevant information. Existing RAG systems rely on a single retriever with fixed top-k selection, restricting access to a narrow and static subset of the corpus. As a result, this single-retriever paradigm has become the primary bottleneck for comprehensive external information acquisition, especially in tasks requiring corpus-level reasoning. To overcome this limitation, we propose MARAG-R1, a reinforcement-learned multi-tool RAG framework that enables LLMs to dynamically coordinate multiple retrieval mechanisms for broader and more precise information access. MARAG-R1 equips the model with four retrieval tools -- semantic search, keyword search, filtering, and aggregation -- and learns both how and when to use them through a two-stage training process: supervised fine-tuning followed by reinforcement learning. This design allows the model to interleave reasoning and retrieval, progressively gathering sufficient evidence for corpus-level synthesis. Experiments on GlobalQA, HotpotQA, and 2WikiMultiHopQA demonstrate that MARAG-R1 substantially outperforms strong baselines and achieves new state-of-the-art results in corpus-level reasoning tasks.
Traffic congestion in urban road networks leads to longer trip times and higher emissions, especially during peak periods. While the Shortest Path First (SPF) algorithm is optimal for a single vehicle in a static network, it performs poorly in dynamic, multi-vehicle settings, often worsening congestion by routing all vehicles along identical paths. We address dynamic vehicle routing through a multi-agent reinforcement learning (MARL) framework for coordinated, network-aware fleet navigation. We first propose Adaptive Navigation (AN), a decentralized MARL model where each intersection agent provides routing guidance based on (i) local traffic and (ii) neighborhood state modeled using Graph Attention Networks (GAT). To improve scalability in large networks, we further propose Hierarchical Hub-based Adaptive Navigation (HHAN), an extension of AN that assigns agents only to key intersections (hubs). Vehicles are routed hub-to-hub under agent control, while SPF handles micro-routing within each hub region. For hub coordination, HHAN adopts centralized training with decentralized execution (CTDE) under the Attentive Q-Mixing (A-QMIX) framework, which aggregates asynchronous vehicle decisions via attention. Hub agents use flow-aware state features that combine local congestion and predictive dynamics for proactive routing. Experiments on synthetic grids and real urban maps (Toronto, Manhattan) show that AN reduces average travel time versus SPF and learning baselines, maintaining 100% routing success. HHAN scales to networks with hundreds of intersections, achieving up to 15.9% improvement under heavy traffic. These findings highlight the potential of network-constrained MARL for scalable, coordinated, and congestion-aware routing in intelligent transportation systems.
Algorithmic collusion has emerged as a central question in AI: Will the interaction between different AI agents deployed in markets lead to collusion? More generally, understanding how emergent behavior, be it a cartel or market dominance from more advanced bots, affects the market overall is an important research question. We propose a hierarchical multi-agent reinforcement learning framework to study algorithmic collusion in market making. The framework includes a self-interested market maker (Agent~A), which is trained in an uncertain environment shaped by an adversary, and three bottom-layer competitors: the self-interested Agent~B1 (whose objective is to maximize its own PnL), the competitive Agent~B2 (whose objective is to minimize the PnL of its opponent), and the hybrid Agent~B$^\star$, which can modulate between the behavior of the other two. To analyze how these agents shape the behavior of each other and affect market outcomes, we propose interaction-level metrics that quantify behavioral asymmetry and system-level dynamics, while providing signals potentially indicative of emergent interaction patterns. Experimental results show that Agent~B2 secures dominant performance in a zero-sum setting against B1, aggressively capturing order flow while tightening average spreads, thus improving market execution efficiency. In contrast, Agent~B$^\star$ exhibits a self-interested inclination when co-existing with other profit-seeking agents, securing dominant market share through adaptive quoting, yet exerting a milder adverse impact on the rewards of Agents~A and B1 compared to B2. These findings suggest that adaptive incentive control supports more sustainable strategic co-existence in heterogeneous agent environments and offers a structured lens for evaluating behavioral design in algorithmic trading systems.
We introduce the General Incentives-based Framework for Fairness (GIFF), a novel approach for fair multi-agent resource allocation that infers fair decision-making from standard value functions. In resource-constrained settings, agents optimizing for efficiency often create inequitable outcomes. Our approach leverages the action-value (Q-)function to balance efficiency and fairness without requiring additional training. Specifically, our method computes a local fairness gain for each action and introduces a counterfactual advantage correction term to discourage over-allocation to already well-off agents. This approach is formalized within a centralized control setting, where an arbitrator uses the GIFF-modified Q-values to solve an allocation problem. Empirical evaluations across diverse domains, including dynamic ridesharing, homelessness prevention, and a complex job allocation task-demonstrate that our framework consistently outperforms strong baselines and can discover far-sighted, equitable policies. The framework's effectiveness is supported by a theoretical foundation; we prove its fairness surrogate is a principled lower bound on the true fairness improvement and that its trade-off parameter offers monotonic tuning. Our findings establish GIFF as a robust and principled framework for leveraging standard reinforcement learning components to achieve more equitable outcomes in complex multi-agent systems.