Topic:Information Extraction
What is Information Extraction? Information extraction is the process of automatically extracting structured information from unstructured text data.
Papers and Code
Mar 17, 2025
Abstract:Talking head synthesis, also known as speech-to-lip synthesis, reconstructs the facial motions that align with the given audio tracks. The synthesized videos are evaluated on mainly two aspects, lip-speech synchronization and image fidelity. Recent studies demonstrate that GAN-based and diffusion-based models achieve state-of-the-art (SOTA) performance on this task, with diffusion-based models achieving superior image fidelity but experiencing lower synchronization compared to their GAN-based counterparts. To this end, we propose SyncDiff, a simple yet effective approach to improve diffusion-based models using a temporal pose frame with information bottleneck and facial-informative audio features extracted from AVHuBERT, as conditioning input into the diffusion process. We evaluate SyncDiff on two canonical talking head datasets, LRS2 and LRS3 for direct comparison with other SOTA models. Experiments on LRS2/LRS3 datasets show that SyncDiff achieves a synchronization score 27.7%/62.3% relatively higher than previous diffusion-based methods, while preserving their high-fidelity characteristics.
* Accepted to WACV 2025
Via

Mar 17, 2025
Abstract:This study proposes an autoencoder approach to extract latent features from cone penetration test profiles to evaluate the potential of incorporating CPT data in an AI model. We employ autoencoders to compress 200 CPT profiles of soil behavior type index (Ic) and normalized cone resistance (qc1Ncs) into ten latent features while preserving critical information. We then utilize the extracted latent features with site parameters to train XGBoost models for predicting lateral spreading occurrences in the 2011 Christchurch earthquake. Models using the latent CPT features outperformed models with conventional CPT metrics or no CPT data, achieving over 83% accuracy. Explainable AI revealed the most crucial latent feature corresponding to soil behavior between 1-3 meter depths, highlighting this depth range's criticality for liquefaction evaluation. The autoencoder approach provides an automated technique for condensing CPT profiles into informative latent features for machine-learning liquefaction models.
Via

Mar 17, 2025
Abstract:This study proposes a 3D semantic segmentation method for the spine based on the improved SwinUNETR to improve segmentation accuracy and robustness. Aiming at the complex anatomical structure of spinal images, this paper introduces a multi-scale fusion mechanism to enhance the feature extraction capability by using information of different scales, thereby improving the recognition accuracy of the model for the target area. In addition, the introduction of the adaptive attention mechanism enables the model to dynamically adjust the attention to the key area, thereby optimizing the boundary segmentation effect. The experimental results show that compared with 3D CNN, 3D U-Net, and 3D U-Net + Transformer, the model of this study has achieved significant improvements in mIoU, mDice, and mAcc indicators, and has better segmentation performance. The ablation experiment further verifies the effectiveness of the proposed improved method, proving that multi-scale fusion and adaptive attention mechanism have a positive effect on the segmentation task. Through the visualization analysis of the inference results, the model can better restore the real anatomical structure of the spinal image. Future research can further optimize the Transformer structure and expand the data scale to improve the generalization ability of the model. This study provides an efficient solution for the task of medical image segmentation, which is of great significance to intelligent medical image analysis.
Via

Mar 16, 2025
Abstract:Sign language recognition involves modeling complex multichannel information, such as hand shapes and movements while relying on sufficient sign language-specific data. However, sign languages are often under-resourced, posing a significant challenge for research and development in this field. To address this gap, we introduce ISLR101, the first publicly available Iranian Sign Language dataset for isolated sign language recognition. This comprehensive dataset includes 4,614 videos covering 101 distinct signs, recorded by 10 different signers (3 deaf individuals, 2 sign language interpreters, and 5 L2 learners) against varied backgrounds, with a resolution of 800x600 pixels and a frame rate of 25 frames per second. It also includes skeleton pose information extracted using OpenPose. We establish both a visual appearance-based and a skeleton-based framework as baseline models, thoroughly training and evaluating them on ISLR101. These models achieve 97.01% and 94.02% accuracy on the test set, respectively. Additionally, we publish the train, validation, and test splits to facilitate fair comparisons.
Via

Mar 17, 2025
Abstract:Aspect-based sentiment analysis seeks to determine sentiment with a high level of detail. While graph convolutional networks (GCNs) are commonly used for extracting sentiment features, their straightforward use in syntactic feature extraction can lead to a loss of crucial information. This paper presents a novel edge-enhanced GCN, called EEGCN, which improves performance by preserving feature integrity as it processes syntactic graphs. We incorporate a bidirectional long short-term memory (Bi-LSTM) network alongside a self-attention-based transformer for effective text encoding, ensuring the retention of long-range dependencies. A bidirectional GCN (Bi-GCN) with message passing then captures the relationships between entities, while an aspect-specific masking technique removes extraneous information. Extensive evaluations and ablation studies on four benchmark datasets show that EEGCN significantly enhances aspect-based sentiment analysis, overcoming issues with syntactic feature extraction and advancing the field's methodologies.
Via

Mar 16, 2025
Abstract:Remote sensing image segmentation is crucial for environmental monitoring, disaster assessment, and resource management, directly affecting the accuracy and efficiency of surface information extraction. The performance of existing supervised models in remote sensing image segmentation tasks highly depends on the quality of label data. However, current label data mainly relies on manual annotation, which comes with high time costs and is subject to subjective interference, resulting in distortion of label boundaries and often a loss of detail. To solve the above problems, our work proposes an Edge-enhanced Labeling Network, called SAM2-ELNet, which incorporates a labeling module and an edge attention mechanism. This model effectively addresses issues such as label detail loss, fragmentation, and inaccurate boundaries. Due to the scarcity of manually annotated remote sensing data, the feature extraction capabilities of traditional neural networks are limited. Our method uses the Hiera backbone of the pre-trained self-supervised large model segment anything model 2 (SAM2) as the encoder, achieves high-quality and efficient feature extraction even with small samples by fine-tuning on downstream tasks. This study compared the training effects of original and enhanced labels on the manually annotated Deep-SAR Oil Spill (SOS) dataset. Results showed that the model trained with enhanced labels performed better and had a lower final loss, indicating closer alignment with the real data distribution. Our work also explores the potential of extending the model into an efficient automatic annotation framework through generalization experiments, facilitating large-scale remote sensing image interpretation and intelligent recognition.
Via

Mar 16, 2025
Abstract:Synthetic data offers a promising path to train models while preserving data privacy. Differentially private (DP) finetuning of large language models (LLMs) as data generator is effective, but is impractical when computation resources are limited. Meanwhile, prompt-based methods such as private evolution, depend heavily on the manual prompts, and ineffectively use private information in their iterative data selection process. To overcome these limitations, we propose CTCL (Data Synthesis with ConTrollability and CLustering), a novel framework for generating privacy-preserving synthetic data without extensive prompt engineering or billion-scale LLM finetuning. CTCL pretrains a lightweight 140M conditional generator and a clustering-based topic model on large-scale public data. To further adapt to the private domain, the generator is DP finetuned on private data for fine-grained textual information, while the topic model extracts a DP histogram representing distributional information. The DP generator then samples according to the DP histogram to synthesize a desired number of data examples. Evaluation across five diverse domains demonstrates the effectiveness of our framework, particularly in the strong privacy regime. Systematic ablation validates the design of each framework component and highlights the scalability of our approach.
Via

Mar 17, 2025
Abstract:Extracting structured labels from radiology reports has been employed to create vision models to simultaneously detect several types of abnormalities. However, existing works focus mainly on the chest region. Few works have been investigated on abdominal radiology reports due to more complex anatomy and a wider range of pathologies in the abdomen. We propose LEAVS (Large language model Extractor for Abdominal Vision Supervision). This labeler can annotate the certainty of presence and the urgency of seven types of abnormalities for nine abdominal organs on CT radiology reports. To ensure broad coverage, we chose abnormalities that encompass most of the finding types from CT reports. Our approach employs a specialized chain-of-thought prompting strategy for a locally-run LLM using sentence extraction and multiple-choice questions in a tree-based decision system. We demonstrate that the LLM can extract several abnormality types across abdominal organs with an average F1 score of 0.89, significantly outperforming competing labelers and humans. Additionally, we show that extraction of urgency labels achieved performance comparable to human annotations. Finally, we demonstrate that the abnormality labels contain valuable information for training a single vision model that classifies several organs as normal or abnormal. We release our code and structured annotations for a public CT dataset containing over 1,000 CT volumes.
Via

Mar 17, 2025
Abstract:Recent advances in Large Multi-modal Models (LMMs) are primarily focused on offline video understanding. Instead, streaming video understanding poses great challenges to recent models due to its time-sensitive, omni-modal and interactive characteristics. In this work, we aim to extend the streaming video understanding from a new perspective and propose a novel task named Visual Instruction Feedback in which models should be aware of visual contents and learn to extract instructions from them. For example, when users wave their hands to agents, agents should recognize the gesture and start conversations with welcome information. Thus, following instructions in visual modality greatly enhances user-agent interactions. To facilitate research, we define seven key subtasks highly relevant to visual modality and collect the ViSpeak-Instruct dataset for training and the ViSpeak-Bench for evaluation. Further, we propose the ViSpeak model, which is a SOTA streaming video understanding LMM with GPT-4o-level performance on various streaming video understanding benchmarks. After finetuning on our ViSpeak-Instruct dataset, ViSpeak is equipped with basic visual instruction feedback ability, serving as a solid baseline for future research.
Via

Mar 17, 2025
Abstract:Hyperspectral Images (HSIs) are crucial across numerous fields but are hindered by the long acquisition times associated with traditional spectrometers. The Coded Aperture Snapshot Spectral Imaging (CASSI) system mitigates this issue through a compression technique that accelerates the acquisition process. However, reconstructing HSIs from compressed data presents challenges due to fixed spatial and spectral resolution constraints. This study introduces a novel method using implicit neural representation for continuous hyperspectral image reconstruction. We propose the Mixed Granularity Implicit Representation (MGIR) framework, which includes a Hierarchical Spectral-Spatial Implicit Encoder for efficient multi-scale implicit feature extraction. This is complemented by a Mixed-Granularity Local Feature Aggregator that adaptively integrates local features across scales, combined with a decoder that merges coordinate information for precise reconstruction. By leveraging implicit neural representations, the MGIR framework enables reconstruction at any desired spatial-spectral resolution, significantly enhancing the flexibility and adaptability of the CASSI system. Extensive experimental evaluations confirm that our model produces reconstructed images at arbitrary resolutions and matches state-of-the-art methods across varying spectral-spatial compression ratios. The code will be released at https://github.com/chh11/MGIR.
* Accepted by TNNLS
Via
