Topic:Information Extraction
What is Information Extraction? Information extraction is the process of automatically extracting structured information from unstructured text data.
Papers and Code
Sep 26, 2025
Abstract:Hydrogen is the most abundant element in our Universe. The first generation of stars and galaxies produced photons that ionized hydrogen gas, driving a cosmological event known as the Epoch of Reionization (EoR). The upcoming Square Kilometre Array Observatory (SKAO) will map the distribution of neutral hydrogen during this era, aiding in the study of the properties of these first-generation objects. Extracting astrophysical information will be challenging, as SKAO will produce a tremendous amount of data where the hydrogen signal will be contaminated with undesired foreground contamination and instrumental systematics. To address this, we develop the latest deep learning techniques to extract information from the 2D power spectra of the hydrogen signal expected from SKAO. We apply a series of neural network models to these measurements and quantify their ability to predict the history of cosmic hydrogen reionization, which is connected to the increasing number and efficiency of early photon sources. We show that the study of the early Universe benefits from modern deep learning technology. In particular, we demonstrate that dedicated machine learning algorithms can achieve more than a $0.95$ $R^2$ score on average in recovering the reionization history. This enables accurate and precise cosmological and astrophysical inference of structure formation in the early Universe.
* Valente de Oliveira, J., Leite, J., Rodrigues, J., Dias, J.,
Cardoso, P. (eds) Progress in Artificial Intelligence. EPIA 2025. Lecture
Notes in Computer Science(), vol 16121. Springer, Cham
* EPIA 2025 preprint version, 12 pages, 3 figures
Via

Sep 26, 2025
Abstract:ControlNet has enabled detailed spatial control in text-to-image diffusion models by incorporating additional visual conditions such as depth or edge maps. However, its effectiveness heavily depends on the availability of visual conditions that are precisely aligned with the generation goal specified by text prompt-a requirement that often fails in practice, especially for uncommon or imaginative scenes. For example, generating an image of a cat cooking in a specific pose may be infeasible due to the lack of suitable visual conditions. In contrast, structurally similar cues can often be found in more common settings-for instance, poses of humans cooking are widely available and can serve as rough visual guides. Unfortunately, existing ControlNet models struggle to use such loosely aligned visual conditions, often resulting in low text fidelity or visual artifacts. To address this limitation, we propose SemanticControl, a training-free method for effectively leveraging misaligned but semantically relevant visual conditions. Our approach adaptively suppresses the influence of the visual condition where it conflicts with the prompt, while strengthening guidance from the text. The key idea is to first run an auxiliary denoising process using a surrogate prompt aligned with the visual condition (e.g., "a human playing guitar" for a human pose condition) to extract informative attention masks, and then utilize these masks during the denoising of the actual target prompt (e.g., cat playing guitar). Experimental results demonstrate that our method improves performance under loosely aligned conditions across various conditions, including depth maps, edge maps, and human skeletons, outperforming existing baselines. Our code is available at https://mung3477.github.io/semantic-control.
* BMVC 2025
Via

Sep 26, 2025
Abstract:The escalating frequency and sophistication of cyber threats increased the need for their comprehensive understanding. This paper explores the intersection of geopolitical dynamics, cyber threat intelligence analysis, and advanced detection technologies, with a focus on the energy domain. We leverage generative artificial intelligence to extract and structure information from raw cyber threat descriptions, enabling enhanced analysis. By conducting a geopolitical comparison of threat actor origins and target regions across multiple databases, we provide insights into trends within the general threat landscape. Additionally, we evaluate the effectiveness of cybersecurity tools -- with particular emphasis on learning-based techniques -- in detecting indicators of compromise for energy-targeted attacks. This analysis yields new insights, providing actionable information to researchers, policy makers, and cybersecurity professionals.
* Gustavo Sanchez, Ghada Elbez, and Veit Hagenmeyer. "A Global
Analysis of Cyber Threats to the Energy Sector:"Currents of Conflict" from a
geopolitical perspective." atp magazin 67.9 (2025): 56-66
* THIS IS A POSTPRINT OF A PEER-REVIEWED ARTICLE, PLEASE CITE IT IF
USING THIS WORK: Gustavo Sanchez, Ghada Elbez, and Veit Hagenmeyer. "A Global
Analysis of Cyber Threats to the Energy Sector:"Currents of Conflict" from a
geopolitical perspective." atp magazin 67.9 (2025): 56-66.
https://doi.org/10.17560/atp.v67i9.2797
Via

Sep 26, 2025
Abstract:Currently, the main approach for Large Language Models (LLMs) to tackle the hallucination issue is incorporating Knowledge Graphs(KGs).However, LLMs typically treat KGs as plain text, extracting only semantic information and limiting their use of the crucial structural aspects of KGs. Another challenge is the gap between the embedding spaces of KGs encoders and LLMs text embeddings, which hinders the effective integration of structured knowledge. To overcome these obstacles, we put forward the SSKG-LLM, an innovative model architecture that is designed to efficiently integrate both the Structural and Semantic information of KGs into the reasoning processes of LLMs. SSKG-LLM incorporates the Knowledge Graph Retrieval (KGR) module and the Knowledge Graph Encoding (KGE) module to preserve semantics while utilizing structure. Then, the Knowledge Graph Adaptation (KGA) module is incorporated to enable LLMs to understand KGs embeddings. We conduct extensive experiments and provide a detailed analysis to explore how incorporating the structural information of KGs can enhance the factual reasoning abilities of LLMs. Our code are available at https://github.com/yfangZhang/SSKG-LLM.
* 11 pages, 5 figures
Via

Sep 26, 2025
Abstract:Large language models (LLMs) often respond confidently to questions even when they lack the necessary information, leading to hallucinated answers. In this work, we study the problem of (un)answerability detection, focusing on extractive question answering (QA) where the model should determine if a passage contains sufficient information to answer a given question. We propose a simple approach for identifying a direction in the model's activation space that captures unanswerability and uses it for classification. This direction is selected by applying activation additions during inference and measuring their impact on the model's abstention behavior. We show that projecting hidden activations onto this direction yields a reliable score for (un)answerability classification. Experiments on two open-weight LLMs and four extractive QA benchmarks show that our method effectively detects unanswerable questions and generalizes better across datasets than existing prompt-based and classifier-based approaches. Moreover, the obtained directions extend beyond extractive QA to unanswerability that stems from factors, such as lack of scientific consensus and subjectivity. Last, causal interventions show that adding or ablating the directions effectively controls the abstention behavior of the model.
Via

Sep 26, 2025
Abstract:Lightweight 3D medical image segmentation remains constrained by a fundamental "efficiency / robustness conflict", particularly when processing complex anatomical structures and heterogeneous modalities. In this paper, we study how to redesign the framework based on the characteristics of high-dimensional 3D images, and explore data synergy to overcome the fragile representation of lightweight methods. Our approach, VeloxSeg, begins with a deployable and extensible dual-stream CNN-Transformer architecture composed of Paired Window Attention (PWA) and Johnson-Lindenstrauss lemma-guided convolution (JLC). For each 3D image, we invoke a "glance-and-focus" principle, where PWA rapidly retrieves multi-scale information, and JLC ensures robust local feature extraction with minimal parameters, significantly enhancing the model's ability to operate with low computational budget. Followed by an extension of the dual-stream architecture that incorporates modal interaction into the multi-scale image-retrieval process, VeloxSeg efficiently models heterogeneous modalities. Finally, Spatially Decoupled Knowledge Transfer (SDKT) via Gram matrices injects the texture prior extracted by a self-supervised network into the segmentation network, yielding stronger representations than baselines at no extra inference cost. Experimental results on multimodal benchmarks show that VeloxSeg achieves a 26% Dice improvement, alongside increasing GPU throughput by 11x and CPU by 48x. Codes are available at https://github.com/JinPLu/VeloxSeg.
Via

Sep 26, 2025
Abstract:Hyperspectral bands offer rich spectral and spatial information; however, their high dimensionality poses challenges for efficient processing. Band selection (BS) methods aim to extract a smaller subset of bands to reduce spectral redundancy. Existing approaches, such as ranking-based, clustering-based, and iterative methods, often suffer from issues like sensitivity to initialization, parameter tuning, and high computational cost. This work introduces a BS strategy integrating three dependence measures: Average Band Correlation (ABC) and Mutual Information (MI), and Variance Inflation Factor (VIF). ABC quantifies linear correlations between spectral bands, while MI measures uncertainty reduction relative to ground truth labels. To address multicollinearity and reduce the search space, the approach first applies a VIF-based pre-selection of spectral bands. Subsequently, a clustering algorithm is used to identify the optimal subset of bands based on the ABC and MI values. Unlike previous methods, this approach is completely parameter-free for hyperspectral band selection, eliminating the need for optimal parameter estimation. The proposed method is evaluated on four standard benchmark datasets: WHU-Hi-LongKou, Pavia University, Salinas, and Oil Spill datasets, and is compared to existing state-of-the-art approaches. There is significant overlap between the bands identified by our proposed method and those selected by other methods, indicating that our approach effectively captures the most relevant spectral features. Further, support vector machine (SVM) classification validates that VIF-driven pruning enhances classification by minimizing multicollinearity. Ablation studies confirm that combining ABC with MI yields robust, discriminative band subsets.
* 13 pages
Via

Sep 26, 2025
Abstract:Data visualization is essential for interpreting complex datasets, yet traditional tools often require technical expertise, limiting accessibility. VizGen is an AI-assisted graph generation system that empowers users to create meaningful visualizations using natural language. Leveraging advanced NLP and LLMs like Claude 3.7 Sonnet and Gemini 2.0 Flash, it translates user queries into SQL and recommends suitable graph types. Built on a multi-agent architecture, VizGen handles SQL generation, graph creation, customization, and insight extraction. Beyond visualization, it analyzes data for patterns, anomalies, and correlations, and enhances user understanding by providing explanations enriched with contextual information gathered from the internet. The system supports real-time interaction with SQL databases and allows conversational graph refinement, making data analysis intuitive and accessible. VizGen democratizes data visualization by bridging the gap between technical complexity and user-friendly design.
Via

Sep 26, 2025
Abstract:Reward design remains a critical bottleneck in visual reinforcement learning (RL) for robotic manipulation. In simulated environments, rewards are conventionally designed based on the distance to a target position. However, such precise positional information is often unavailable in real-world visual settings due to sensory and perceptual limitations. In this study, we propose a method that implicitly infers spatial distances through keypoints extracted from images. Building on this, we introduce Reward Learning with Anticipation Model (ReLAM), a novel framework that automatically generates dense, structured rewards from action-free video demonstrations. ReLAM first learns an anticipation model that serves as a planner and proposes intermediate keypoint-based subgoals on the optimal path to the final goal, creating a structured learning curriculum directly aligned with the task's geometric objectives. Based on the anticipated subgoals, a continuous reward signal is provided to train a low-level, goal-conditioned policy under the hierarchical reinforcement learning (HRL) framework with provable sub-optimality bound. Extensive experiments on complex, long-horizon manipulation tasks show that ReLAM significantly accelerates learning and achieves superior performance compared to state-of-the-art methods.
Via

Sep 26, 2025
Abstract:While recent advances in machine learning have equipped Weather Foundation Models (WFMs) with substantial generalization capabilities across diverse downstream tasks, the escalating computational requirements associated with their expanding scale increasingly hinder practical deployment. Current Parameter-Efficient Fine-Tuning (PEFT) methods, designed for vision or language tasks, fail to address the unique challenges of weather downstream tasks, such as variable heterogeneity, resolution diversity, and spatiotemporal coverage variations, leading to suboptimal performance when applied to WFMs. To bridge this gap, we introduce WeatherPEFT, a novel PEFT framework for WFMs incorporating two synergistic innovations. First, during the forward pass, Task-Adaptive Dynamic Prompting (TADP) dynamically injects the embedding weights within the encoder to the input tokens of the pre-trained backbone via internal and external pattern extraction, enabling context-aware feature recalibration for specific downstream tasks. Furthermore, during backpropagation, Stochastic Fisher-Guided Adaptive Selection (SFAS) not only leverages Fisher information to identify and update the most task-critical parameters, thereby preserving invariant pre-trained knowledge, but also introduces randomness to stabilize the selection. We demonstrate the effectiveness and efficiency of WeatherPEFT on three downstream tasks, where existing PEFT methods show significant gaps versus Full-Tuning, and WeatherPEFT achieves performance parity with Full-Tuning using fewer trainable parameters. The code of this work will be released.
Via
