Topic:Information Extraction
What is Information Extraction? Information extraction is the process of automatically extracting structured information from unstructured text data.
Papers and Code
Oct 03, 2024
Abstract:Large language models (LLMs) can generate fluent summaries across domains using prompting techniques, reducing the need to train models for summarization applications. However, crafting effective prompts that guide LLMs to generate summaries with the appropriate level of detail and writing style remains a challenge. In this paper, we explore the use of salient information extracted from the source document to enhance summarization prompts. We show that adding keyphrases in prompts can improve ROUGE F1 and recall, making the generated summaries more similar to the reference and more complete. The number of keyphrases can control the precision-recall trade-off. Furthermore, our analysis reveals that incorporating phrase-level salient information is superior to word- or sentence-level. However, the impact on hallucination is not universally positive across LLMs. To conduct this analysis, we introduce Keyphrase Signal Extractor (SigExt), a lightweight model that can be finetuned to extract salient keyphrases. By using SigExt, we achieve consistent ROUGE improvements across datasets and open-weight and proprietary LLMs without any LLM customization. Our findings provide insights into leveraging salient information in building prompt-based summarization systems.
* Accepted to EMNLP 2024 Industry Track
Via
Oct 03, 2024
Abstract:Large language models (LLMs) can generate fluent summaries across domains using prompting techniques, reducing the need to train models for summarization applications. However, crafting effective prompts that guide LLMs to generate summaries with the appropriate level of detail and writing style remains a challenge. In this paper, we explore the use of salient information extracted from the source document to enhance summarization prompts. We show that adding keyphrases in prompts can improve ROUGE F1 and recall, making the generated summaries more similar to the reference and more complete. The number of keyphrases can control the precision-recall trade-off. Furthermore, our analysis reveals that incorporating phrase-level salient information is superior to word- or sentence-level. However, the impact on hallucination is not universally positive across LLMs. To conduct this analysis, we introduce Keyphrase Signal Extractor (CriSPO), a lightweight model that can be finetuned to extract salient keyphrases. By using CriSPO, we achieve consistent ROUGE improvements across datasets and open-weight and proprietary LLMs without any LLM customization. Our findings provide insights into leveraging salient information in building prompt-based summarization systems.
Via
Oct 03, 2024
Abstract:This paper introduces a new hybrid descriptor for 3D point matching and point cloud registration, combining local geometrical properties and learning-based feature propagation for each point's neighborhood structure description. The proposed architecture first extracts prior geometrical information by computing each point's planarity, anisotropy, and omnivariance using a Principal Components Analysis (PCA). This prior information is completed by a descriptor based on the normal vectors estimated thanks to constructing a neighborhood based on triangles. The final geometrical descriptor is propagated between the points using local graph convolutions and attention mechanisms. The new feature extractor is evaluated on ModelNet40, Bunny Stanford dataset, KITTI and MVP (Multi-View Partial)-RG for point cloud registration and shows interesting results, particularly on noisy and low overlapping point clouds.
Via
Oct 02, 2024
Abstract:Key information extraction (KIE) from visually rich documents (VRD) has been a challenging task in document intelligence because of not only the complicated and diverse layouts of VRD that make the model hard to generalize but also the lack of methods to exploit the multimodal features in VRD. In this paper, we propose a light-weight model named GraphRevisedIE that effectively embeds multimodal features such as textual, visual, and layout features from VRD and leverages graph revision and graph convolution to enrich the multimodal embedding with global context. Extensive experiments on multiple real-world datasets show that GraphRevisedIE generalizes to documents of varied layouts and achieves comparable or better performance compared to previous KIE methods. We also publish a business license dataset that contains both real-life and synthesized documents to facilitate research of document KIE.
* Pattern Recognition Volume 140, August 2023, 109542
Via
Oct 03, 2024
Abstract:Convolutional neural networks (CNNs) have shown great effectiveness in medical image segmentation. However, they may be limited in modeling large inter-subject variations in organ shapes and sizes and exploiting global long-range contextual information. This is because CNNs typically employ convolutions with fixed-sized local receptive fields and lack the mechanisms to utilize global information. To address these limitations, we developed Dynamic Multi-Resolution Convolution (DMRC) and Dynamic Multi-Scale Convolution (DMSC) modules. Both modules enhance the representation capabilities of single convolutions to capture varying scaled features and global contextual information. This is achieved in the DMRC module by employing a convolutional filter on images with different resolutions and subsequently utilizing dynamic mechanisms to model global inter-dependencies between features. In contrast, the DMSC module extracts features at different scales by employing convolutions with different kernel sizes and utilizing dynamic mechanisms to extract global contextual information. The utilization of convolutions with different kernel sizes in the DMSC module may increase computational complexity. To lessen this burden, we propose to use a lightweight design for convolution layers with a large kernel size. Thus, DMSC and DMRC modules are designed as lightweight drop-in replacements for single convolutions, and they can be easily integrated into general CNN architectures for end-to-end training. The segmentation network was proposed by incorporating our DMSC and DMRC modules into a standard U-Net architecture, termed Dynamic Multi-scale and Multi-resolution Convolution network (DMC-Net). The results demonstrate that our proposed DMSC and DMRC can enhance the representation capabilities of single convolutions and improve segmentation accuracy.
* 14 pages, 4 figures
Via
Oct 02, 2024
Abstract:Machine-learning based generation of process models from natural language text process descriptions provides a solution for the time-intensive and expensive process discovery phase. Many organizations have to carry out this phase, before they can utilize business process management and its benefits. Yet, research towards this is severely restrained by an apparent lack of large and high-quality datasets. This lack of data can be attributed to, among other things, an absence of proper tool assistance for dataset creation, resulting in high workloads and inferior data quality. We explore two assistance features to support dataset creation, a recommendation system for identifying process information in the text and visualization of the current state of already identified process information as a graphical business process model. A controlled user study with 31 participants shows that assisting dataset creators with recommendations lowers all aspects of workload, up to $-51.0\%$, and significantly improves annotation quality, up to $+38.9\%$. We make all data and code available to encourage further research on additional novel assistance strategies.
Via
Oct 03, 2024
Abstract:Trajectory prediction is a pivotal component of autonomous driving systems, enabling the application of accumulated movement experience to current scenarios. Although most existing methods concentrate on learning continuous representations to gain valuable experience, they often suffer from computational inefficiencies and struggle with unfamiliar situations. To address this issue, we propose the Fragmented-Memory-based Trajectory Prediction (FMTP) model, inspired by the remarkable learning capabilities of humans, particularly their ability to leverage accumulated experience and recall relevant memories in unfamiliar situations. The FMTP model employs discrete representations to enhance computational efficiency by reducing information redundancy while maintaining the flexibility to utilize past experiences. Specifically, we design a learnable memory array by consolidating continuous trajectory representations from the training set using defined quantization operations during the training phase. This approach further eliminates redundant information while preserving essential features in discrete form. Additionally, we develop an advanced reasoning engine based on language models to deeply learn the associative rules among these discrete representations. Our method has been evaluated on various public datasets, including ETH-UCY, inD, SDD, nuScenes, Waymo, and VTL-TP. The extensive experimental results demonstrate that our approach achieves significant performance and extracts more valuable experience from past trajectories to inform the current state.
Via
Oct 02, 2024
Abstract:Visually-Rich Documents (VRDs), encompassing elements like charts, tables, and references, convey complex information across various fields. However, extracting information from these rich documents is labor-intensive, especially given their inconsistent formats and domain-specific requirements. While pretrained models for VRD Understanding have progressed, their reliance on large, annotated datasets limits scalability. This paper introduces the Domain Adaptive Visually-rich Document Understanding (DAViD) framework, which utilises machine-generated synthetic data for domain adaptation. DAViD integrates fine-grained and coarse-grained document representation learning and employs synthetic annotations to reduce the need for costly manual labelling. By leveraging pretrained models and synthetic data, DAViD achieves competitive performance with minimal annotated datasets. Extensive experiments validate DAViD's effectiveness, demonstrating its ability to efficiently adapt to domain-specific VRDU tasks.
* Work in progress
Via
Oct 03, 2024
Abstract:Dynamic and interactive traffic scenarios pose significant challenges for autonomous driving systems. Reinforcement learning (RL) offers a promising approach by enabling the exploration of driving policies beyond the constraints of pre-collected datasets and predefined conditions, particularly in complex environments. However, a critical challenge lies in effectively extracting spatial and temporal features from sequences of high-dimensional, multi-modal observations while minimizing the accumulation of errors over time. Additionally, efficiently guiding large-scale RL models to converge on optimal driving policies without frequent failures during the training process remains tricky. We propose an end-to-end model-based RL algorithm named Ramble to address these issues. Ramble processes multi-view RGB images and LiDAR point clouds into low-dimensional latent features to capture the context of traffic scenarios at each time step. A transformer-based architecture is then employed to model temporal dependencies and predict future states. By learning a dynamics model of the environment, Ramble can foresee upcoming traffic events and make more informed, strategic decisions. Our implementation demonstrates that prior experience in feature extraction and decision-making plays a pivotal role in accelerating the convergence of RL models toward optimal driving policies. Ramble achieves state-of-the-art performance regarding route completion rate and driving score on the CARLA Leaderboard 2.0, showcasing its effectiveness in managing complex and dynamic traffic situations.
* 10 pages, 3 figures, experiment under progress, only to demonstrate
the originality of the method
Via
Oct 02, 2024
Abstract:While large language models (LLMs) have seen unprecedented advancements in capabilities and applications across a variety of use-cases, safety alignment of these models is still an area of active research. The fragile nature of LLMs, even models that have undergone extensive alignment and safety training regimes, warrants additional safety steering steps via training-free, inference-time methods. While recent work in the area of mechanistic interpretability has investigated how activations in latent representation spaces may encode concepts, and thereafter performed representation engineering to induce such concepts in LLM outputs, the applicability of such for safety is relatively under-explored. Unlike recent inference-time safety steering works, in this paper we explore safety steering of LLM outputs using: (i) category-specific steering vectors, thereby enabling fine-grained control over the steering, and (ii) sophisticated methods for extracting informative steering vectors for more effective safety steering while retaining quality of the generated text. We demonstrate our exploration on multiple LLMs and datasets, and showcase the effectiveness of the proposed steering method, along with a discussion on the implications and best practices.
Via