Information extraction is the process of automatically extracting structured information from unstructured text data.
For self-triggered readout of SiPM sum signals, a waveform classification can aid a simple threshold trigger to reliably extract calorimetric particle hit information online at an early stage and thus reduce the volume of transmitted data. Typically, the ADC data acquisition is based on FPGAs for edge data processing. In this study, we consider look-up-table-based neural-networks and address challenges of binary multi-layer neural networks' layout, footprint, performance and training. We show that these structures can be trained using a genetic algorithm and achieve the inference latency compatible with dead-time free processing online.
Background In analytical chemistry, spatial information about materials is commonly captured through imaging techniques, such as traditional color cameras or with advanced hyperspectral cameras and microscopes. However, efficiently extracting and analyzing this spatial information for exploratory and predictive purposes remains a challenge, especially when using traditional chemometric methods. Recent advances in deep learning and artificial intelligence have significantly enhanced image processing capabilities, enabling the extraction of multiscale deep features that are otherwise challenging to capture with conventional image processing techniques. Despite the wide availability of open-source deep learning models, adoption in analytical chemistry remains limited because of the absence of structured, step-by-step guidance for implementing these models. Results This tutorial aims to bridge this gap by providing a step-by-step guide for applying deep learning approaches to extract spatial information from imaging data and integrating it with other data sources, such as spectral information. Importantly, the focus of this work is not on training deep learning models for image processing but on using existing open source models to extract deep features from imaging data. Significance The tutorial provides MATLAB code tutorial demonstrations, showcasing the processing of imaging data from various imaging modalities commonly encountered in analytical chemistry. Readers must run the tutorial steps on their own datasets using the codes presented in this tutorial.
Data-driven approaches using deep learning are emerging as powerful techniques to extract non-Gaussian information from cosmological large-scale structure. This work presents the first simulation-based inference (SBI) pipeline that combines weak lensing and galaxy clustering maps in a realistic Dark Energy Survey Year 3 (DES Y3) configuration and serves as preparation for a forthcoming analysis of the survey data. We develop a scalable forward model based on the CosmoGridV1 suite of N-body simulations to generate over one million self-consistent mock realizations of DES Y3 at the map level. Leveraging this large dataset, we train deep graph convolutional neural networks on the full survey footprint in spherical geometry to learn low-dimensional features that approximately maximize mutual information with target parameters. These learned compressions enable neural density estimation of the implicit likelihood via normalizing flows in a ten-dimensional parameter space spanning cosmological $w$CDM, intrinsic alignment, and linear galaxy bias parameters, while marginalizing over baryonic, photometric redshift, and shear bias nuisances. To ensure robustness, we extensively validate our inference pipeline using synthetic observations derived from both systematic contaminations in our forward model and independent Buzzard galaxy catalogs. Our forecasts yield significant improvements in cosmological parameter constraints, achieving $2-3\times$ higher figures of merit in the $\Omega_m - S_8$ plane relative to our implementation of baseline two-point statistics and effectively breaking parameter degeneracies through probe combination. These results demonstrate the potential of SBI analyses powered by deep learning for upcoming Stage-IV wide-field imaging surveys.
1. A hard stop for the implementation of rigorous conservation initiatives is our lack of key species data, especially occurrence data. Furthermore, researchers have to contend with an accelerated speed at which new information must be collected and processed due to anthropogenic activity. Publications ranging from scientific papers to gray literature contain this crucial information but their data are often not machine-readable, requiring extensive human work to be retrieved. 2. We present the ARETE R package, an open-source software aiming to automate data extraction of species occurrences powered by large language models, namely using the chatGPT Application Programming Interface. This R package integrates all steps of the data extraction and validation process, from Optical Character Recognition to detection of outliers and output in tabular format. Furthermore, we validate ARETE through systematic comparison between what is modelled and the work of human annotators. 3. We demonstrate the usefulness of the approach by comparing range maps produced using GBIF data and with those automatically extracted for 100 species of spiders. Newly extracted data allowed to expand the known Extent of Occurrence by a mean three orders of magnitude, revealing new areas where the species were found in the past, which mayhave important implications for spatial conservation planning and extinction risk assessments. 4. ARETE allows faster access to hitherto untapped occurrence data, a potential game changer in projects requiring such data. Researchers will be able to better prioritize resources, manually verifying selected species while maintaining automated extraction for the majority. This workflow also allows predicting available bibliographic data during project planning.
Upcoming measurements of the kinetic Sunyaev-Zel'dovich (kSZ) effect, which results from Cosmic Microwave Background (CMB) photons scattering off moving electrons, offer a powerful probe of the Epoch of Reionization (EoR). The kSZ signal contains key information about the timing, duration, and spatial structure of the EoR. A precise measurement of the CMB optical depth $\tau$, a key parameter that characterizes the universe's integrated electron density, would significantly constrain models of early structure formation. However, the weak kSZ signal is difficult to extract from CMB observations due to significant contamination from astrophysical foregrounds. We present a machine learning approach to extract $\tau$ from simulated kSZ maps. We train advanced machine learning models, including swin transformers, on high-resolution seminumeric simulations of the kSZ signal. To robustly quantify prediction uncertainties of $\tau$, we employ the Laplace Approximation (LA). This approach provides an efficient and principled Gaussian approximation to the posterior distribution over the model's weights, allowing for reliable error estimation. We investigate and compare two distinct application modes: a post-hoc LA applied to a pre-trained model, and an online LA where model weights and hyperparameters are optimized jointly by maximizing the marginal likelihood. This approach provides a framework for robustly constraining $\tau$ and its associated uncertainty, which can enhance the analysis of upcoming CMB surveys like the Simons Observatory and CMB-S4.
We present a framework that combines Large Language Models with computational image analytics for non-invasive, zero-shot prediction of IDH mutation status in brain gliomas. For each subject, coregistered multi-parametric MRI scans and multi-class tumor segmentation maps were processed to extract interpretable semantic (visual) attributes and quantitative features, serialized in a standardized JSON file, and used to query GPT 4o and GPT 5 without fine-tuning. We evaluated this framework on six publicly available datasets (N = 1427) and results showcased high accuracy and balanced classification performance across heterogeneous cohorts, even in the absence of manual annotations. GPT 5 outperformed GPT 4o in context-driven phenotype interpretation. Volumetric features emerged as the most important predictors, supplemented by subtype-specific imaging markers and clinical information. Our results demonstrate the potential of integrating LLM-based reasoning with computational image analytics for precise, non-invasive tumor genotyping, advancing diagnostic strategies in neuro-oncology. The code is available at https://github.com/ATPLab-LUMS/CIM-LLM.
Integrated Sensing and Communication (ISAC) has been identified as a key 6G application by ITU and 3GPP. A realistic, standard-compatible channel model is essential for ISAC system design. To characterize the impact of Sensing Targets (STs), 3GPP defines ISAC channel as a combination of target and background channels, comprising multipath components related to STs and those originating solely from the environment, respectively. Although the background channel does not carry direct ST information, its accurate modeling is critical for evaluating sensing performance, especially in complex environments. Existing communication standards characterize propagation between separated transmitter (Tx) and receiver (Rx). However, modeling background channels in the ISAC monostatic mode, where the Tx and Rx are co-located, remains a pressing challenge. In this paper, we firstly conduct ISAC monostatic background channel measurements for an indoor scenario at 28 GHz. Realistic channel parameters are extracted, revealing pronounced single-hop propagation and discrete multipath distribution. Inspired by these properties, a novel stochastic model is proposed to characterizing the ISAC monostatic background channel as the superposition of sub-channels between the monostatic Tx&Rx and multiple communication Rx-like Reference Points (RPs). This model is compatible with standardizations, and a 3GPP-extended implementation framework is introduced. Finally, a genetic algorithm-based method is proposed to extract the optimal number and placement of multi-RPs. The optimization approach and modeling framework are validated by comparing measured and simulated channel parameters. Results demonstrate that the proposed model effectively captures monostatic background channel characteristics, addresses a critical gap in ISAC channel modeling, and supports 6G standardization.
Brain-to-speech (BTS) systems represent a groundbreaking approach to human communication by enabling the direct transformation of neural activity into linguistic expressions. While recent non-invasive BTS studies have largely focused on decoding predefined words or sentences, achieving open-vocabulary neural communication comparable to natural human interaction requires decoding unconstrained speech. Additionally, effectively integrating diverse signals derived from speech is crucial for developing personalized and adaptive neural communication and rehabilitation solutions for patients. This study investigates the potential of speech synthesis for previously unseen sentences across various speech modes by leveraging phoneme-level information extracted from high-density electroencephalography (EEG) signals, both independently and in conjunction with electromyography (EMG) signals. Furthermore, we examine the properties affecting phoneme decoding accuracy during sentence reconstruction and offer neurophysiological insights to further enhance EEG decoding for more effective neural communication solutions. Our findings underscore the feasibility of biosignal-based sentence-level speech synthesis for reconstructing unseen sentences, highlighting a significant step toward developing open-vocabulary neural communication systems adapted to diverse patient needs and conditions. Additionally, this study provides meaningful insights into the development of communication and rehabilitation solutions utilizing EEG-based decoding technologies.
Deep neural networks (DNNs) have achieved remarkable success in computer vision tasks such as image classification, segmentation, and object detection. However, they are vulnerable to adversarial attacks, which can cause incorrect predictions with small perturbations in input images. Addressing this issue is crucial for deploying robust deep-learning systems. This paper presents a novel approach that utilizes contrastive learning for adversarial defense, a previously unexplored area. Our method leverages the contrastive loss function to enhance the robustness of classification models by training them with both clean and adversarially perturbed images. By optimizing the model's parameters alongside the perturbations, our approach enables the network to learn robust representations that are less susceptible to adversarial attacks. Experimental results show significant improvements in the model's robustness against various types of adversarial perturbations. This suggests that contrastive loss helps extract more informative and resilient features, contributing to the field of adversarial robustness in deep learning.
This work presents an ontology-integrated large language model (LLM) framework for chemical engineering that unites structured domain knowledge with generative reasoning. The proposed pipeline aligns model training and inference with the COPE ontology through a sequence of data acquisition, semantic preprocessing, information extraction, and ontology mapping steps, producing templated question-answer pairs that guide fine-tuning. A control-focused decoding stage and citation gate enforce syntactic and factual grounding by constraining outputs to ontology-linked terms, while evaluation metrics quantify both linguistic quality and ontological accuracy. Feedback and future extensions, including semantic retrieval and iterative validation, further enhance the system's interpretability and reliability. This integration of symbolic structure and neural generation provides a transparent, auditable approach for applying LLMs to process control, safety analysis, and other critical engineering contexts.