Topic:Information Extraction
What is Information Extraction? Information extraction is the process of automatically extracting structured information from unstructured text data.
Papers and Code
Jun 09, 2025
Abstract:This paper presents a novel framework for multi-talker automatic speech recognition without the need for auxiliary information. Serialized Output Training (SOT), a widely used approach, suffers from recognition errors due to speaker assignment failures. Although incorporating auxiliary information, such as token-level timestamps, can improve recognition accuracy, extracting such information from natural conversational speech remains challenging. To address this limitation, we propose Speaker-Distinguishable CTC (SD-CTC), an extension of CTC that jointly assigns a token and its corresponding speaker label to each frame. We further integrate SD-CTC into the SOT framework, enabling the SOT model to learn speaker distinction using only overlapping speech and transcriptions. Experimental comparisons show that multi-task learning with SD-CTC and SOT reduces the error rate of the SOT model by 26% and achieves performance comparable to state-of-the-art methods relying on auxiliary information.
* Accepted at INTERSPEECH 2025
Via

Jun 09, 2025
Abstract:Mathematical reasoning remains challenging for LLMs due to complex logic and the need for precise computation. Existing methods enhance LLM reasoning by synthesizing datasets through problem rephrasing, but face issues with generation quality and problem complexity. To address this, we propose to extract structural information with generated problem-solving code from mathematical reasoning and guide data generation with structured solutions. Applied to MATH and GSM8K, our approach produces 39K problems with labeled intermediate steps and a 6.1K-problem benchmark of higher difficulty. Results on our benchmark show that model performance declines as reasoning length increases. Additionally, we conducted fine-tuning experiments using the proposed training data on a range of LLMs, and the results validate the effectiveness of our dataset. We hope the proposed method and dataset will contribute to future research in enhancing LLM reasoning capabilities.
Via

Jun 09, 2025
Abstract:Text-to-SQL enables non-experts to retrieve data from databases by converting natural language queries into SQL. However, state-of-the-art text-to-SQL studies rely on the BIRD dataset, which assumes that evidence is provided along with questions. Although BIRD facilitates research advancements, it assumes that users have expertise and domain knowledge, contradicting the fundamental goal of text-to-SQL. In addition, human-generated evidence in BIRD contains defects, including missing or erroneous evidence, which affects model performance. To address this issue, we propose SEED (System for Evidence Extraction and Domain knowledge generation), an approach that automatically generates evidence to improve performance and practical usability in real-world scenarios. SEED systematically analyzes database schema, description files, and values to extract relevant information. We evaluated SEED on BIRD and Spider, demonstrating that it significantly improves SQL generation accuracy in the no-evidence scenario, and in some cases, even outperforms the setting where BIRD evidence is provided. Our results highlight that SEED-generated evidence not only bridges the gap between research and real-world deployment but also improves the adaptability and robustness of text-to-SQL models. Our code is available at https://github.com/felix01189/SEED
* Proc. of IEEE ICDE Workshops (ICDEW), 2025
Via

Jun 09, 2025
Abstract:We introduce ZeroVO, a novel visual odometry (VO) algorithm that achieves zero-shot generalization across diverse cameras and environments, overcoming limitations in existing methods that depend on predefined or static camera calibration setups. Our approach incorporates three main innovations. First, we design a calibration-free, geometry-aware network structure capable of handling noise in estimated depth and camera parameters. Second, we introduce a language-based prior that infuses semantic information to enhance robust feature extraction and generalization to previously unseen domains. Third, we develop a flexible, semi-supervised training paradigm that iteratively adapts to new scenes using unlabeled data, further boosting the models' ability to generalize across diverse real-world scenarios. We analyze complex autonomous driving contexts, demonstrating over 30% improvement against prior methods on three standard benchmarks, KITTI, nuScenes, and Argoverse 2, as well as a newly introduced, high-fidelity synthetic dataset derived from Grand Theft Auto (GTA). By not requiring fine-tuning or camera calibration, our work broadens the applicability of VO, providing a versatile solution for real-world deployment at scale.
Via

Jun 08, 2025
Abstract:Automatic Speech Recognition (ASR) has achieved remarkable success with deep learning, driving advancements in conversational artificial intelligence, media transcription, and assistive technologies. However, ASR systems still struggle in complex environments such as TV series, where overlapping speech, domain-specific terminology, and long-range contextual dependencies pose significant challenges to transcription accuracy. Existing multimodal approaches fail to correct ASR outputs with the rich temporal and contextual information available in video. To address this limitation, we propose a novel multimodal post-correction framework that refines ASR transcriptions by leveraging contextual cues extracted from video. Our framework consists of two stages: ASR Generation and Video-based Post-Correction, where the first stage produces the initial transcript and the second stage corrects errors using Video-based Contextual Information Extraction and Context-aware ASR Correction. We employ the Video-Large Multimodal Model (VLMM) to extract key contextual information using tailored prompts, which is then integrated with a Large Language Model (LLM) to refine the ASR output. We evaluate our method on a multimodal benchmark for TV series ASR and demonstrate its effectiveness in improving ASR performance by leveraging video-based context to enhance transcription accuracy in complex multimedia environments.
Via

Jun 09, 2025
Abstract:Despite recent advances in retrieval-augmented generation (RAG) for video understanding, effectively understanding long-form video content remains underexplored due to the vast scale and high complexity of video data. Current RAG approaches typically segment videos into fixed-length chunks, which often disrupts the continuity of contextual information and fails to capture authentic scene boundaries. Inspired by the human ability to naturally organize continuous experiences into coherent scenes, we present SceneRAG, a unified framework that leverages large language models to segment videos into narrative-consistent scenes by processing ASR transcripts alongside temporal metadata. SceneRAG further sharpens these initial boundaries through lightweight heuristics and iterative correction. For each scene, the framework fuses information from both visual and textual modalities to extract entity relations and dynamically builds a knowledge graph, enabling robust multi-hop retrieval and generation that account for long-range dependencies. Experiments on the LongerVideos benchmark, featuring over 134 hours of diverse content, confirm that SceneRAG substantially outperforms prior baselines, achieving a win rate of up to 72.5 percent on generation tasks.
Via

Jun 09, 2025
Abstract:How can we benefit from large models without sacrificing inference speed, a common dilemma in self-driving systems? A prevalent solution is a dual-system architecture, employing a small model for rapid, reactive decisions and a larger model for slower but more informative analyses. Existing dual-system designs often implement parallel architectures where inference is either directly conducted using the large model at each current frame or retrieved from previously stored inference results. However, these works still struggle to enable large models for a timely response to every online frame. Our key insight is to shift intensive computations of the current frame to previous time steps and perform a batch inference of multiple time steps to make large models respond promptly to each time step. To achieve the shifting, we introduce Efficiency through Thinking Ahead (ETA), an asynchronous system designed to: (1) propagate informative features from the past to the current frame using future predictions from the large model, (2) extract current frame features using a small model for real-time responsiveness, and (3) integrate these dual features via an action mask mechanism that emphasizes action-critical image regions. Evaluated on the Bench2Drive CARLA Leaderboard-v2 benchmark, ETA advances state-of-the-art performance by 8% with a driving score of 69.53 while maintaining a near-real-time inference speed at 50 ms.
* ICCV 2025 submission. For code, see
https://github.com/opendrivelab/ETA
Via

Jun 07, 2025
Abstract:Audio bandwidth extension is the task of reconstructing missing high frequency components of bandwidth-limited audio signals, where bandwidth limitation is a common issue for audio signals due to several reasons, including channel capacity and data constraints. While conventional spectral band replication is a well-established parametric approach to audio bandwidth extension, the SBR usually entails coarse feature extraction and reconstruction techniques, which leads to limitations when processing various types of audio signals. In parallel, numerous deep neural network-based audio bandwidth extension methods have been proposed. These DNN-based methods are usually referred to as blind BWE, as these methods do not rely on prior information extracted from original signals, and only utilize given low frequency band signals to estimate missing high frequency components. In order to replace conventional SBR with DNNs, simply adopting existing DNN-based methodologies results in suboptimal performance due to the blindness of these methods. My proposed research suggests a new approach to parametric non-blind bandwidth extension, as DNN-based side information extraction and DNN-based bandwidth extension are performed only at the front and end of the audio coding pipeline.
* Accepted to Interspeech 2025
Via

Jun 09, 2025
Abstract:Multimodal retrieval-augmented generation (RAG) systems enhance large vision-language models by integrating cross-modal knowledge, enabling their increasing adoption across real-world multimodal tasks. These knowledge databases may contain sensitive information that requires privacy protection. However, multimodal RAG systems inherently grant external users indirect access to such data, making them potentially vulnerable to privacy attacks, particularly membership inference attacks (MIAs). % Existing MIA methods targeting RAG systems predominantly focus on the textual modality, while the visual modality remains relatively underexplored. To bridge this gap, we propose MrM, the first black-box MIA framework targeted at multimodal RAG systems. It utilizes a multi-object data perturbation framework constrained by counterfactual attacks, which can concurrently induce the RAG systems to retrieve the target data and generate information that leaks the membership information. Our method first employs an object-aware data perturbation method to constrain the perturbation to key semantics and ensure successful retrieval. Building on this, we design a counterfact-informed mask selection strategy to prioritize the most informative masked regions, aiming to eliminate the interference of model self-knowledge and amplify attack efficacy. Finally, we perform statistical membership inference by modeling query trials to extract features that reflect the reconstruction of masked semantics from response patterns. Experiments on two visual datasets and eight mainstream commercial visual-language models (e.g., GPT-4o, Gemini-2) demonstrate that MrM achieves consistently strong performance across both sample-level and set-level evaluations, and remains robust under adaptive defenses.
Via

Jun 09, 2025
Abstract:BridgeNet is a novel hybrid framework that integrates convolutional neural networks with physics-informed neural networks to efficiently solve non-linear, high-dimensional Fokker-Planck equations (FPEs). Traditional PINNs, which typically rely on fully connected architectures, often struggle to capture complex spatial hierarchies and enforce intricate boundary conditions. In contrast, BridgeNet leverages adaptive CNN layers for effective local feature extraction and incorporates a dynamically weighted loss function that rigorously enforces physical constraints. Extensive numerical experiments across various test cases demonstrate that BridgeNet not only achieves significantly lower error metrics and faster convergence compared to conventional PINN approaches but also maintains robust stability in high-dimensional settings. This work represents a substantial advancement in computational physics, offering a scalable and accurate solution methodology with promising applications in fields ranging from financial mathematics to complex system dynamics.
Via
