Abstract:With the remarkable success of large language models (LLMs) in natural language understanding and generation, multimodal large language models (MLLMs) have rapidly advanced in their ability to process data across multiple modalities. While most existing efforts focus on scaling up language models or constructing higher-quality training data, limited attention has been paid to effectively integrating cross-modal knowledge into the language space. In vision-language models, for instance, aligning modalities using only high-level visual features often discards the rich semantic information present in mid- and low-level features, limiting the model's ability of cross-modality understanding. To address this issue, we propose SparseCut, a general cross-modal fusion architecture for MLLMs, introducing sparse shortcut connections between the cross-modal encoder and the LLM. These shortcut connections enable the efficient and hierarchical integration of visual features at multiple levels, facilitating richer semantic fusion without increasing computational overhead. We further introduce an efficient multi-grained feature fusion module, which performs the fusion of visual features before routing them through the shortcuts. This preserves the original language context and does not increase the overall input length, thereby avoiding an increase in computational complexity for the LLM. Experiments demonstrate that SparseCut significantly enhances the performance of MLLMs across various multimodal benchmarks with generality and scalability for different base LLMs.
Abstract:Significant progress has been made in low-light image enhancement with respect to visual quality. However, most existing methods primarily operate in the pixel domain or rely on implicit feature representations. As a result, the intrinsic geometric structural priors of images are often neglected. 2D Gaussian Splatting (2DGS) has emerged as a prominent explicit scene representation technique characterized by superior structural fitting capabilities and high rendering efficiency. Despite these advantages, the utilization of 2DGS in low-level vision tasks remains unexplored. To bridge this gap, LL-GaussianMap is proposed as the first unsupervised framework incorporating 2DGS into low-light image enhancement. Distinct from conventional methodologies, the enhancement task is formulated as a gain map generation process guided by 2DGS primitives. The proposed method comprises two primary stages. First, high-fidelity structural reconstruction is executed utilizing 2DGS. Then, data-driven enhancement dictionary coefficients are rendered via the rasterization mechanism of Gaussian splatting through an innovative unified enhancement module. This design effectively incorporates the structural perception capabilities of 2DGS into gain map generation, thereby preserving edges and suppressing artifacts during enhancement. Additionally, the reliance on paired data is circumvented through unsupervised learning. Experimental results demonstrate that LL-GaussianMap achieves superior enhancement performance with an extremely low storage footprint, highlighting the effectiveness of explicit Gaussian representations for image enhancement.
Abstract:Federated Learning (FL) enables collaborative model training across decentralized clients without sharing private data. However, FL suffers from biased global models due to non-IID and long-tail data distributions. We propose \textbf{FedSM}, a novel client-centric framework that mitigates this bias through semantics-guided feature mixup and lightweight classifier retraining. FedSM uses a pretrained image-text-aligned model to compute category-level semantic relevance, guiding the category selection of local features to mix-up with global prototypes to generate class-consistent pseudo-features. These features correct classifier bias, especially when data are heavily skewed. To address the concern of potential domain shift between the pretrained model and the data, we propose probabilistic category selection, enhancing feature diversity to effectively mitigate biases. All computations are performed locally, requiring minimal server overhead. Extensive experiments on long-tail datasets with various imbalanced levels demonstrate that FedSM consistently outperforms state-of-the-art methods in accuracy, with high robustness to domain shift and computational efficiency.
Abstract:This work presents an ontology-integrated large language model (LLM) framework for chemical engineering that unites structured domain knowledge with generative reasoning. The proposed pipeline aligns model training and inference with the COPE ontology through a sequence of data acquisition, semantic preprocessing, information extraction, and ontology mapping steps, producing templated question-answer pairs that guide fine-tuning. A control-focused decoding stage and citation gate enforce syntactic and factual grounding by constraining outputs to ontology-linked terms, while evaluation metrics quantify both linguistic quality and ontological accuracy. Feedback and future extensions, including semantic retrieval and iterative validation, further enhance the system's interpretability and reliability. This integration of symbolic structure and neural generation provides a transparent, auditable approach for applying LLMs to process control, safety analysis, and other critical engineering contexts.