Most vision models are trained on RGB images processed through ISP pipelines optimized for human perception, which can discard sensor-level information useful for machine reasoning. RAW images preserve unprocessed scene data, enabling models to leverage richer cues for both object detection and object description, capturing fine-grained details, spatial relationships, and contextual information often lost in processed images. To support research in this domain, we introduce RAWDet-7, a large-scale dataset of ~25k training and 7.6k test RAW images collected across diverse cameras, lighting conditions, and environments, densely annotated for seven object categories following MS-COCO and LVIS conventions. In addition, we provide object-level descriptions derived from the corresponding high-resolution sRGB images, facilitating the study of object-level information preservation under RAW image processing and low-bit quantization. The dataset allows evaluation under simulated 4-bit, 6-bit, and 8-bit quantization, reflecting realistic sensor constraints, and provides a benchmark for studying detection performance, description quality & detail, and generalization in low-bit RAW image processing. Dataset & code upon acceptance.
Open-vocabulary object detection in remote sensing commonly relies on text-only prompting to specify target categories, implicitly assuming that inference-time category queries can be reliably grounded through pretraining-induced text-visual alignment. In practice, this assumption often breaks down in remote sensing scenarios due to task- and application-specific category semantics, resulting in unstable category specification under open-vocabulary settings. To address this limitation, we propose RS-MPOD, a multimodal open-vocabulary detection framework that reformulates category specification beyond text-only prompting by incorporating instance-grounded visual prompts, textual prompts, and their multimodal integration. RS-MPOD introduces a visual prompt encoder to extract appearance-based category cues from exemplar instances, enabling text-free category specification, and a multimodal fusion module to integrate visual and textual information when both modalities are available. Extensive experiments on standard, cross-dataset, and fine-grained remote sensing benchmarks show that visual prompting yields more reliable category specification under semantic ambiguity and distribution shifts, while multimodal prompting provides a flexible alternative that remains competitive when textual semantics are well aligned.
Anomaly detection identifies departures from expected behavior in safety-critical settings. When target-domain normal data are unavailable, zero-shot anomaly detection (ZSAD) leverages vision-language models (VLMs). However, CLIP's coarse image-text alignment limits both localization and detection due to (i) spatial misalignment and (ii) weak sensitivity to fine-grained anomalies; prior work compensates with complex auxiliary modules yet largely overlooks the choice of backbone. We revisit the backbone and use TIPS-a VLM trained with spatially aware objectives. While TIPS alleviates CLIP's issues, it exposes a distributional gap between global and local features. We address this with decoupled prompts-fixed for image-level detection and learnable for pixel-level localization-and by injecting local evidence into the global score. Without CLIP-specific tricks, our TIPS-based pipeline improves image-level performance by 1.1-3.9% and pixel-level by 1.5-6.9% across seven industrial datasets, delivering strong generalization with a lean architecture. Code is available at github.com/AlirezaSalehy/Tipsomaly.
Logical anomalies are violations of predefined constraints on object quantity, spatial layout, and compositional relationships in industrial images. While prior work largely treats anomaly detection as a binary decision, such formulations cannot indicate which logical rule is broken and therefore offer limited value for quality assurance. We introduce Logical Anomaly Classification (LAC), a task that unifies anomaly detection and fine-grained violation classification in a single inference step. To tackle LAC, we propose LogiCls, a vision-language framework that decomposes complex logical constraints into a sequence of verifiable subqueries. We further present a data-centric instruction synthesis pipeline that generates chain-of-thought (CoT) supervision for these subqueries, coupling precise grounding annotations with diverse image-text augmentations to adapt vision language models (VLMs) to logic-sensitive reasoning. Training is stabilized by a difficulty-aware resampling strategy that emphasizes challenging subqueries and long tail constraint types. Extensive experiments demonstrate that LogiCls delivers robust, interpretable, and accurate industrial logical anomaly classification, providing both the predicted violation categories and their evidence trails.
Multimodal sentiment analysis, which includes both image and text data, presents several challenges due to the dissimilarities in the modalities of text and image, the ambiguity of sentiment, and the complexities of contextual meaning. In this work, we experiment with finding the sentiments of image and text data, individually and in combination, on two datasets. Part of the approach introduces the novel `Textual-Cues for Enhancing Multimodal Sentiment Analysis' (TEMSA) based on object recognition methods to address the difficulties in multimodal sentiment analysis. Specifically, we extract the names of all objects detected in an image and combine them with associated text; we call this combination of text and image data TEMS. Our results demonstrate that only TEMS improves the results when considering all the object names for the overall sentiment of multimodal data compared to individual analysis. This research contributes to advancing multimodal sentiment analysis and offers insights into the efficacy of TEMSA in combining image and text data for multimodal sentiment analysis.
This study addresses the demand for real-time detection of tomatoes and tomato flowers by agricultural robots deployed on edge devices in greenhouse environments. Under practical imaging conditions, object detection systems often face challenges such as large scale variations caused by varying camera distances, severe occlusion from plant structures, and highly imbalanced class distributions. These factors make conventional object detection approaches that rely on fully annotated datasets difficult to simultaneously achieve high detection accuracy and deployment efficiency. To overcome these limitations, this research proposes an active learning driven lightweight object detection framework, integrating data analysis, model design, and training strategy. First, the size distribution of objects in raw agricultural images is analyzed to redefine an operational target range, thereby improving learning stability under real-world conditions. Second, an efficient feature extraction module is incorporated to reduce computational cost, while a lightweight attention mechanism is introduced to enhance feature representation under multi-scale and occluded scenarios. Finally, an active learning strategy is employed to iteratively select high-information samples for annotation and training under a limited labeling budget, effectively improving the recognition performance of minority and small-object categories. Experimental results demonstrate that, while maintaining a low parameter count and inference cost suitable for edge-device deployment, the proposed method effectively improves the detection performance of tomatoes and tomato flowers in raw images. Under limited annotation conditions, the framework achieves an overall detection accuracy of 67.8% mAP, validating its practicality and feasibility for intelligent agricultural applications.
Traditional object detection systems are typically constrained to predefined categories, limiting their applicability in dynamic environments. In contrast, open-vocabulary object detection (OVD) enables the identification of objects from novel classes not present in the training set. Recent advances in visual-language modeling have led to significant progress of OVD. However, prior works face challenges in either adapting the single-scale image backbone from CLIP to the detection framework or ensuring robust visual-language alignment. We propose Visual-Language Detection (VLDet), a novel framework that revamps feature pyramid for fine-grained visual-language alignment, leading to improved OVD performance. With the VL-PUB module, VLDet effectively exploits the visual-language knowledge from CLIP and adapts the backbone for object detection through feature pyramid. In addition, we introduce the SigRPN block, which incorporates a sigmoid-based anchor-text contrastive alignment loss to improve detection of novel categories. Through extensive experiments, our approach achieves 58.7 AP for novel classes on COCO2017 and 24.8 AP on LVIS, surpassing all state-of-the-art methods and achieving significant improvements of 27.6% and 6.9%, respectively. Furthermore, VLDet also demonstrates superior zero-shot performance on closed-set object detection.
Region-of-Interest (ROI)-based image compression allocates bits unevenly according to the semantic importance of different regions. Such differentiated coding typically induces a sharp-peaked and heavy-tailed distribution. This distribution characteristic mathematically necessitates a probability model with adaptable shape parameters for accurate description. However, existing methods commonly use a Gaussian model to fit this distribution, resulting in a loss of coding performance. To systematically analyze the impact of this distribution on ROI coding, we develop a unified rate-distortion optimization theoretical paradigm. Building on this paradigm, we propose a novel Generalized Gaussian Model (GGM) to achieve flexible modeling of the latent variables distribution. To support stable optimization of GGM, we introduce effective differentiable functions and further propose a dynamic lower bound to alleviate train-test mismatch. Moreover, finite differences are introduced to solve the gradient computation after GGM fits the distribution. Experiments on COCO2017 demonstrate that our method achieves state-of-the-art in both ROI reconstruction and downstream tasks (e.g., Segmentation, Object Detection). Furthermore, compared to classical probability models, our GGM provides a more precise fit to feature distributions and achieves superior coding performance. The project page is at https://github.com/hukai-tju/ROIGGM.
Object detection is a crucial component in autonomous vehicle systems. It enables the vehicle to perceive and understand its environment by identifying and locating various objects around it. By utilizing advanced imaging and deep learning techniques, autonomous vehicle systems can rapidly and accurately identify objects based on their features. Different deep learning methods vary in their ability to accurately detect and classify objects in autonomous vehicle systems. Selecting the appropriate method significantly impacts system performance, robustness, and efficiency in real-world driving scenarios. While several generic deep learning architectures like YOLO, SSD, and Faster R-CNN have been proposed, guidance on their suitability for specific autonomous driving applications is often limited. The choice of method affects detection accuracy, processing speed, environmental robustness, sensor integration, scalability, and edge case handling. This study provides a comprehensive experimental analysis comparing two prominent object detection models: YOLOv5 (a one-stage detector) and Faster R-CNN (a two-stage detector). Their performance is evaluated on a diverse dataset combining real and synthetic images, considering various metrics including mean Average Precision (mAP), recall, and inference speed. The findings reveal that YOLOv5 demonstrates superior performance in terms of mAP, recall, and training efficiency, particularly as dataset size and image resolution increase. However, Faster R-CNN shows advantages in detecting small, distant objects and performs well in challenging lighting conditions. The models' behavior is also analyzed under different confidence thresholds and in various real-world scenarios, providing insights into their applicability for autonomous driving systems.
Deep learning-based object detectors have achieved impressive performance in microscopy imaging, yet their confidence estimates often lack calibration, limiting their reliability for biomedical applications. In this work, we introduce a new approach to improve model calibration by leveraging multi-rater annotations. We propose to train separate models on the annotations from single experts and aggregate their predictions to emulate consensus. This improves upon label sampling strategies, where models are trained on mixed annotations, and offers a more principled way to capture inter-rater variability. Experiments on a colorectal organoid dataset annotated by two experts demonstrate that our rater-specific ensemble strategy improves calibration performance while maintaining comparable detection accuracy. These findings suggest that explicitly modelling rater disagreement can lead to more trustworthy object detectors in biomedical imaging.