Heart rate variability is the variation in time intervals between heartbeats, which is an important indicator of cardiovascular health.
Large Language Models (LLMs) have emerged as powerful learning tools, but they lack awareness of learners' cognitive and physiological states, limiting their adaptability to the user's learning style. Contemporary learning techniques primarily focus on structured learning paths, knowledge tracing, and generic adaptive testing but fail to address real-time learning challenges driven by cognitive load, attention fluctuations, and engagement levels. Building on findings from a formative user study (N=66), we introduce GuideAI, a multi-modal framework that enhances LLM-driven learning by integrating real-time biosensory feedback including eye gaze tracking, heart rate variability, posture detection, and digital note-taking behavior. GuideAI dynamically adapts learning content and pacing through cognitive optimizations (adjusting complexity based on learning progress markers), physiological interventions (breathing guidance and posture correction), and attention-aware strategies (redirecting focus using gaze analysis). Additionally, GuideAI supports diverse learning modalities, including text-based, image-based, audio-based, and video-based instruction, across varied knowledge domains. A preliminary study (N = 25) assessed GuideAI's impact on knowledge retention and cognitive load through standardized assessments. The results show statistically significant improvements in both problem-solving capability and recall-based knowledge assessments. Participants also experienced notable reductions in key NASA-TLX measures including mental demand, frustration levels, and effort, while simultaneously reporting enhanced perceived performance. These findings demonstrate GuideAI's potential to bridge the gap between current LLM-based learning systems and individualized learner needs, paving the way for adaptive, cognition-aware education at scale.
This study presents a real-world canine heart sound dataset and evaluates SoNUS version 3.2.x, a machine learning algorithm for preliminary cardiac analysis using smartphone microphone recordings. More than one hundred recordings were collected from dogs across four continents, with thirty eight recordings annotated by board certified veterinary cardiologists for quantitative evaluation. SoNUS version 3.2.x employs a multi-stage fallback architecture with quality-aware filtering to ensure reliable output under variable recording conditions. The primary sixty second model achieved mean and median heart rate accuracies of ninety one point six three percent and ninety four point nine five percent, while a fast model optimized for thirty to forty second recordings achieved mean and median accuracies of eighty eight point eight six percent and ninety two point nine eight percent. These results demonstrate the feasibility of extracting clinically relevant cardiac information from opportunistic smartphone recordings, supporting scalable preliminary assessment and telehealth applications in veterinary cardiology.
Heart rate variability (HRV) is a pivotal noninvasive marker for autonomic monitoring; however, applying Large Language Models (LLMs) to HRV interpretation is hindered by physiological hallucinations. These include respiratory sinus arrhythmia (RSA) contamination, short-data instability in nonlinear metrics, and the neglect of individualized baselines in favor of population norms. We propose C-GRASP (Clinically-Grounded Reasoning for Affective Signal Processing), a guardrailed RAG-enhanced pipeline that decomposes HRV interpretation into eight traceable reasoning steps. Central to C-GRASP is a Z-score Priority Hierarchy that enforces the weighting of individualized baseline shifts over normative statistics. The system effectively mitigates spectral hallucinations through automated RSA-aware guardrails, preventing contamination of frequency-domain indices. Evaluated on 414 trials from the DREAMER dataset, C-GRASP integrated with high-scale reasoning models (e.g., MedGemma3-thinking) achieved superior performance in 4-class emotion classification (37.3% accuracy) and a Clinical Reasoning Consistency (CRC) score of 69.6%. Ablation studies confirm that the individualized Delta Z-score module serves as the critical logical anchor, preventing the "population bias" common in native LLMs. Ultimately, C-GRASP transitions affective computing from black-box classification to transparent, evidence-based clinical decision support, paving the way for safer AI integration in biomedical engineering.
Assistive electric-powered wheelchairs (EPWs) have become essential mobility aids for people with disabilities such as amyotrophic lateral sclerosis (ALS), post-stroke hemiplegia, and dementia-related mobility impairment. This work presents a novel multi-modal EPW control system designed to prioritize patient needs while allowing seamless switching between control modes. Four complementary interfaces, namely joystick, speech, hand gesture, and electrooculography (EOG), are integrated with a continuous vital sign monitoring framework measuring heart rate variability, oxygen saturation (SpO2), and skin temperature. This combination enables greater patient independence while allowing caregivers to maintain real-time supervision and early intervention capability. Two-point calibration of the biophysical sensors against clinical reference devices resulted in root mean square errors of at most 2 bpm for heart rate, 0.5 degree Celsius for skin temperature, and 1 percent for SpO2. Experimental evaluation involved twenty participants with mobility impairments executing a total of 500 indoor navigation commands. The achieved command recognition accuracies were 99 percent for joystick control, 97 percent plus or minus 2 percent for speech, and 95 percent plus or minus 3 percent for hand gesture, with an average closed-loop latency of 20 plus or minus 0.5 milliseconds. Caregivers receive real-time alerts through an Android application following encrypted cloud transmission of physiological data. By integrating multi-modal mobility control with cloud-enabled health monitoring and reporting latency and energy budgets, the proposed prototype addresses key challenges in assistive robotics, contributes toward compliance with ISO 7176-31 and IEC 80601-2-78 safety standards, and establishes a foundation for future adaptive machine learning enhancements.
Deep learning has achieved strong performance for electrocardiogram (ECG) classification within individual datasets, yet dependable generalization across heterogeneous acquisition settings remains a major obstacle to clinical deployment and longitudinal monitoring. A key limitation of many model architectures is the implicit entanglement of morphological waveform patterns and rhythm dynamics, which can promote shortcut learning and amplify sensitivity to distribution shifts. We propose ECG-RAMBA, a framework that separates morphology and rhythm and then re-integrates them through context-aware fusion. ECG-RAMBA combines: (i) deterministic morphological features extracted by MiniRocket, (ii) global rhythm descriptors computed from heart-rate variability (HRV), and (iii) long-range contextual modeling via a bi-directional Mamba backbone. To improve sensitivity to transient abnormalities under windowed inference, we introduce a numerically stable Power Mean pooling operator ($Q=3$) that emphasizes high-evidence segments while avoiding the brittleness of max pooling and the dilution of averaging. We evaluate under a protocol-faithful setting with subject-level cross-validation, a fixed decision threshold, and no test-time adaptation. On the Chapman--Shaoxing dataset, ECG-RAMBA achieves a macro ROC-AUC $\approx 0.85$. In zero-shot transfer, it attains PR-AUC $=0.708$ for atrial fibrillation detection on the external CPSC-2021 dataset, substantially outperforming a comparable raw-signal Mamba baseline, and shows consistent cross-dataset performance on PTB-XL. Ablation studies indicate that deterministic morphology provides a strong foundation, while explicit rhythm modeling and long-range context are critical drivers of cross-domain robustness.
Machine vision models, particularly deep neural networks, are increasingly applied to physiological signal interpretation, including electrocardiography (ECG), yet they typically require large training datasets and offer limited insight into the causal features underlying their predictions. This lack of data efficiency and interpretability constrains their clinical reliability and alignment with human reasoning. Here, we show that a perception-informed pseudo-colouring technique, previously demonstrated to enhance human ECG interpretation, can improve both explainability and few-shot learning in deep neural networks analysing complex physiological data. We focus on acquired, drug-induced long QT syndrome (LQTS) as a challenging case study characterised by heterogeneous signal morphology, variable heart rate, and scarce positive cases associated with life-threatening arrhythmias such as torsades de pointes. This setting provides a stringent test of model generalisation under extreme data scarcity. By encoding clinically salient temporal features, such as QT-interval duration, into structured colour representations, models learn discriminative and interpretable features from as few as one or five training examples. Using prototypical networks and a ResNet-18 architecture, we evaluate one-shot and few-shot learning on ECG images derived from single cardiac cycles and full 10-second rhythms. Explainability analyses show that pseudo-colouring guides attention toward clinically meaningful ECG features while suppressing irrelevant signal components. Aggregating multiple cardiac cycles further improves performance, mirroring human perceptual averaging across heartbeats. Together, these findings demonstrate that human-like perceptual encoding can bridge data efficiency, explainability, and causal reasoning in medical machine intelligence.
In precision sports such as archery, athletes' performance depends on both biomechanical stability and psychological resilience. Traditional motion analysis systems are often expensive and intrusive, limiting their use in natural training environments. To address this limitation, we propose a machine learning-based multimodal framework that integrates wearable sensor data for simultaneous action recognition and stress estimation. Using a self-developed wrist-worn device equipped with an accelerometer and photoplethysmography (PPG) sensor, we collected synchronized motion and physiological data during real archery sessions. For motion recognition, we introduce a novel feature--Smoothed Differential Acceleration (SmoothDiff)--and employ a Long Short-Term Memory (LSTM) model to identify motion phases, achieving 96.8% accuracy and 95.9% F1-score. For stress estimation, we extract heart rate variability (HRV) features from PPG signals and apply a Multi-Layer Perceptron (MLP) classifier, achieving 80% accuracy in distinguishing high- and low-stress levels. The proposed framework demonstrates that integrating motion and physiological sensing can provide meaningful insights into athletes' technical and mental states. This approach offers a foundation for developing intelligent, real-time feedback systems for training optimization in archery and other precision sports.
This report introduces VitalLens 2.0, a new deep learning model for estimating physiological signals from face video. This new model demonstrates a significant leap in accuracy for remote photoplethysmography (rPPG), enabling the robust estimation of not only heart rate (HR) and respiratory rate (RR) but also Heart Rate Variability (HRV) metrics. This advance is achieved through a combination of a new model architecture and a substantial increase in the size and diversity of our training data, now totaling 1,413 unique individuals. We evaluate VitalLens 2.0 on a new, combined test set of 422 unique individuals from four public and private datasets. When averaging results by individual, VitalLens 2.0 achieves a Mean Absolute Error (MAE) of 1.57 bpm for HR, 1.08 bpm for RR, 10.18 ms for HRV-SDNN, and 16.45 ms for HRV-RMSSD. These results represent a new state-of-the-art, significantly outperforming previous methods. This model is now available to developers via the VitalLens API at https://rouast.com/api.




Non-contact electrocardiogram (ECG) reconstruction from radar signals offers a promising approach for unobtrusive cardiac monitoring. We present LifWavNet, a lifting wavelet network based on a multi-resolution analysis and synthesis (MRAS) model for radar-to-ECG reconstruction. Unlike prior models that use fixed wavelet approaches, LifWavNet employs learnable lifting wavelets with lifting and inverse lifting units to adaptively capture radar signal features and synthesize physiologically meaningful ECG waveforms. To improve reconstruction fidelity, we introduce a multi-resolution short-time Fourier transform (STFT) loss, that enforces consistency with the ground-truth ECG in both temporal and spectral domains. Evaluations on two public datasets demonstrate that LifWavNet outperforms state-of-the-art methods in ECG reconstruction and downstream vital sign estimation (heart rate and heart rate variability). Furthermore, intermediate feature visualization highlights the interpretability of multi-resolution decomposition and synthesis in radar-to-ECG reconstruction. These results establish LifWavNet as a robust framework for radar-based non-contact ECG measurement.
Energy expenditure estimation aims to infer human metabolic rate from physiological signals such as heart rate, respiration, or accelerometer data, and has been studied primarily with classical regression methods. The few existing deep learning approaches rarely disentangle the role of neural architecture from that of signal choice. In this work, we systematically evaluate both aspects. We compare classical baselines with newer neural architectures across single signals, signal pairs, and grouped sensor inputs for diverse physical activities. Our results show that minute ventilation is the most predictive individual signal, with a transformer model achieving the lowest root mean square error (RMSE) of 0.87 W/kg across all activities. Paired and grouped signals, such as those from the Hexoskin smart shirt (five signals), offer good alternatives for faster models like CNN and ResNet with attention. Per-activity evaluation revealed mixed outcomes: notably better results in low-intensity activities (RMSE down to 0.29 W/kg; NRMSE = 0.04), while higher-intensity tasks showed larger RMSE but more comparable normalized errors. Finally, subject-level analysis highlights strong inter-individual variability, motivating the need for adaptive modeling strategies. Our code and models will be publicly available at https://github.com/Sarvibabakhani/deeplearning-biosignals-ee .