Abstract:Wearable sensors are widely used to collect physiological data and develop stress detection models. However, most studies focus on a single dataset, rarely evaluating model reproducibility across devices, populations, or study conditions. We previously assessed the reproducibility of stress detection models across multiple studies, testing models trained on one dataset against others using heart rate (with R-R interval) and electrodermal activity (EDA). In this study, we extended our stress detection reproducibility to consumer wearable sensors. We compared validated research-grade devices, to consumer wearables - Biopac MP160, Polar H10, Empatica E4, to the Garmin Forerunner 55s, assessing device-specific stress detection performance by conducting a new stress study on undergraduate students. Thirty-five students completed three standardized stress-induction tasks in a lab setting. Biopac MP160 performed the best, being consistent with our expectations of it as the gold standard, though performance varied across devices and models. Combining heart rate variability (HRV) and EDA enhanced stress prediction across most scenarios. However, Empatica E4 showed variability; while HRV and EDA improved stress detection in leave-one-subject-out (LOSO) evaluations (AUROC up to 0.953), device-specific limitations led to underperformance when tested with our pre-trained stress detection tool (AUROC 0.723), highlighting generalizability challenges related to hardware-model compatibility. Garmin Forerunner 55s demonstrated strong potential for real-world stress monitoring, achieving the best mental arithmetic stress detection performance in LOSO (AUROC up to 0.961) comparable to research-grade devices like Polar H10 (AUROC 0.954), and Empatica E4 (AUROC 0.905 with HRV-only model and AUROC 0.953 with HRV+EDA model), with the added advantage of consumer-friendly wearability for free-living contexts.