Abstract:The development of assistive robots for social collaboration raises critical questions about responsible and inclusive design, especially when interacting with individuals from protected groups such as those with disabilities or advanced age. Currently, research is scarce on how participants assess varying robot behaviors in combination with diverse human needs, likely since participants have limited real-world experience with advanced domestic robots. In the current study, we aim to address this gap while using methods that enable participants to assess robot behavior, as well as methods that support meaningful reflection despite limited experience. In an online study, 112 participants (from both experimental and control groups) evaluated 7 videos from a total of 28 variations of human-robot collaboration types. The experimental group first completed a cognitive-affective mapping (CAM) exercise on human-robot collaboration before providing their ratings. Although CAM reflection did not significantly affect overall ratings, it led to more pronounced assessments for certain combinations of robot behavior and human condition. Most importantly, the type of human-robot collaboration influences the assessment. Antisocial robot behavior was consistently rated as the lowest, while collaboration with aged individuals elicited more sensitive evaluations. Scenarios involving object handovers were viewed more positively than those without them. These findings suggest that both human characteristics and interaction paradigms influence the perceived acceptability of collaborative robots, underscoring the importance of prosocial design. They also highlight the potential of reflective methods, such as CAM, to elicit nuanced feedback, supporting the development of user-centered and socially responsible robotic systems tailored to diverse populations.
Abstract:Human interaction experience plays a crucial role in the effectiveness of human-machine collaboration, especially as interactions in future systems progress towards tighter physical and functional integration. While automation design has been shown to impact task performance, its influence on human experience metrics such as flow, sense of agency (SoA), and embodiment remains underexplored. This study investigates how variations in automation design affect these psychological experience measures and examines correlations between subjective experience and physiological indicators. A user study was conducted in a simulated wood workshop, where participants collaborated with a lightweight robot under four automation levels. The results of the study indicate that medium automation levels enhance flow, SoA and embodiment, striking a balance between support and user autonomy. In contrast, higher automation, despite optimizing task performance, diminishes perceived flow and agency. Furthermore, we observed that grip force might be considered as a real-time proxy of SoA, while correlations with heart rate variability were inconclusive. The findings underscore the necessity for automation strategies that integrate human- centric metrics, aiming to optimize both performance and user experience in collaborative robotic systems