Jul 08, 2025
Abstract:Link prediction infers missing or future relations between graph nodes, based on connection patterns. Scientific literature networks and knowledge graphs are typically large, sparse, and noisy, and often contain missing links between entities. We present an AI-driven hierarchical link prediction framework that integrates matrix factorization to infer hidden associations and steer discovery in complex material domains. Our method combines Hierarchical Nonnegative Matrix Factorization (HNMFk) and Boolean matrix factorization (BNMFk) with automatic model selection, as well as Logistic matrix factorization (LMF), we use to construct a three-level topic tree from a 46,862-document corpus focused on 73 transition-metal dichalcogenides (TMDs). These materials are studied in a variety of physics fields with many current and potential applications. An ensemble BNMFk + LMF approach fuses discrete interpretability with probabilistic scoring. The resulting HNMFk clusters map each material onto coherent topics like superconductivity, energy storage, and tribology. Also, missing or weakly connected links are highlight between topics and materials, suggesting novel hypotheses for cross-disciplinary exploration. We validate our method by removing publications about superconductivity in well-known superconductors, and show the model predicts associations with the superconducting TMD clusters. This shows the method finds hidden connections in a graph of material to latent topic associations built from scientific literature, especially useful when examining a diverse corpus of scientific documents covering the same class of phenomena or materials but originating from distinct communities and perspectives. The inferred links generating new hypotheses, produced by our method, are exposed through an interactive Streamlit dashboard, designed for human-in-the-loop scientific discovery.
* 4 pages, 3 figures, 1 table
Via
