Gpr


Gaussian process regression (GPR) is a non-parametric regression technique that models the relationship between input and output variables.

Magnetic field estimation using Gaussian process regression for interactive wireless power system design

Add code
Oct 22, 2025
Viaarxiv icon

Adaptive Optimizable Gaussian Process Regression Linear Least Squares Regression Filtering Method for SEM Images

Add code
Oct 09, 2025
Figure 1 for Adaptive Optimizable Gaussian Process Regression Linear Least Squares Regression Filtering Method for SEM Images
Figure 2 for Adaptive Optimizable Gaussian Process Regression Linear Least Squares Regression Filtering Method for SEM Images
Figure 3 for Adaptive Optimizable Gaussian Process Regression Linear Least Squares Regression Filtering Method for SEM Images
Figure 4 for Adaptive Optimizable Gaussian Process Regression Linear Least Squares Regression Filtering Method for SEM Images
Viaarxiv icon

Neural Network Surrogates for Free Energy Computation of Complex Chemical Systems

Add code
Oct 01, 2025
Viaarxiv icon

Gaussian Process Regression -- Neural Network Hybrid with Optimized Redundant Coordinates

Add code
Sep 10, 2025
Viaarxiv icon

VisionSafeEnhanced VPC: Cautious Predictive Control with Visibility Constraints under Uncertainty for Autonomous Robotic Surgery

Add code
Aug 26, 2025
Viaarxiv icon

Improving LLMs' Generalized Reasoning Abilities by Graph Problems

Add code
Jul 23, 2025
Viaarxiv icon

Estimating Spatially-Dependent GPS Errors Using a Swarm of Robots

Add code
Jun 24, 2025
Viaarxiv icon

Overcoming Overfitting in Reinforcement Learning via Gaussian Process Diffusion Policy

Add code
Jun 16, 2025
Viaarxiv icon

Enhancing Experimental Efficiency in Materials Design: A Comparative Study of Taguchi and Machine Learning Methods

Add code
Jun 04, 2025
Viaarxiv icon

Empirical 3D Channel Modeling for Cellular-Connected UAVs: A Triple-Layer Machine Learning Approach

Add code
May 26, 2025
Viaarxiv icon