Gaussian process regression (GPR) is a non-parametric regression technique that models the relationship between input and output variables.
This paper investigates whether structural econometric models can rival machine learning in forecasting energy--macro dynamics while retaining causal interpretability. Using monthly data from 1999 to 2025, we develop a unified framework that integrates Time-Varying Parameter Structural VARs (TVP-SVAR) with advanced dependence structures, including DCC-GARCH, t-copulas, and mixed Clayton--Frank--Gumbel copulas. These models are empirically evaluated against leading machine learning techniques Gaussian Process Regression (GPR), Artificial Neural Networks, Random Forests, and Support Vector Regression across seven macro-financial and energy variables, with Brent crude oil as the central asset. The findings reveal three major insights. First, TVP-SVAR consistently outperforms standard VAR models, confirming structural instability in energy transmission channels. Second, copula-based extensions capture non-linear and tail dependence more effectively than symmetric DCC models, particularly during periods of macroeconomic stress. Third, despite their methodological differences, copula-enhanced econometric models and GPR achieve statistically equivalent predictive accuracy (t-test p = 0.8444). However, only the econometric approach provides interpretable impulse responses, regime shifts, and tail-risk diagnostics. We conclude that machine learning can replicate predictive performance but cannot substitute the explanatory power of structural econometrics. This synthesis offers a pathway where AI accuracy and economic interpretability jointly inform energy policy and risk management.
Accurate channel estimation with low pilot overhead and computational complexity is key to efficiently utilizing multi-antenna wireless systems. Motivated by the evolution from purely statistical descriptions toward physics- and geometry-aware propagation models, this work focuses on incorporating channel information into a Gaussian process regression (GPR) framework for improving the channel estimation accuracy. In this work, we propose a GPR-based channel estimation framework along with a novel Spatial-correlation (SC) kernel that explicitly captures the channel's second-order statistics. We derive a closed-form expression of the proposed SC-based GPR estimator and prove that its posterior mean is optimal in terms of minimum mean-square error (MMSE) under the same second-order statistics, without requiring the underlying channel distribution to be Gaussian. Our analysis reveals that, with up to 50% pilot overhead reduction, the proposed method achieves the lowest normalized mean-square error, the highest empirical 95% credible-interval coverage, and superior preservation of spectral efficiency compared to benchmark estimators, while maintaining lower computational complexity than the conventional MMSE estimator.
Ground-penetrating radar (GPR) combines depth resolution, non-destructive operation, and broad material sensitivity, yet it has seen limited use in diagnosing building envelopes. The compact geometry of wall assemblies, where reflections from closely spaced studs, sheathing, and cladding strongly overlap, has made systematic inversion difficult. Recent advances in data-driven interpretation provide an opportunity to revisit this challenge and assess whether machine learning can reliably extract structural information from such complex signals. Here, we develop a GPR-based inversion framework that decomposes wall diagnostics into classification tasks addressing vertical (stud presence) and lateral (wall-type) variations. Alongside model development, we implement multiple feature minimization strategies - including recursive elimination, agglomerative clustering, and L0-based sparsity - to promote fidelity and interpretability. Among these approaches, the L0-based sparse neural network (SparseNN) emerges as particularly effective: it exceeds Random Forest accuracy while relying on only a fraction of the input features, each linked to identifiable dielectric interfaces. SHAP analysis further confirms that the SparseNN learns reflection patterns consistent with physical layer boundaries. In summary, this framework establishes a foundation for physically interpretable and data-efficient inversion of wall assemblies using GPR radargrams. Although defect detection is not addressed here, the ability to reconstruct intact envelope structure and isolate features tied to key elements provides a necessary baseline for future inversion and anomaly-analysis tasks.
This paper employs a data-driven approach to determine the impact of concrete mixture compositions on the temporal evolution of chloride in concrete structures. This is critical for assessing the service life of civil infrastructure subjected to aggressive environments. The adopted methodology relies on several simple and complex standalone machine learning (ML) algorithms, with the primary objective of establishing confidence in the unbiased prediction of the underlying hidden correlations. The simple algorithms include linear regression (LR), k-nearest neighbors (KNN) regression, and kernel ridge regression (KRR). The complex algorithms entail support vector regression (SVR), Gaussian process regression (GPR), and two families of artificial neural networks, including a feedforward network (multilayer perceptron, MLP) and a gated recurrent unit (GRU). The MLP architecture cannot explicitly handle sequential data, a limitation addressed by the GRU. A comprehensive dataset is considered. The performance of ML algorithms is evaluated, with KRR, GPR, and MLP exhibiting high accuracy. Given the diversity of the adopted concrete mixture proportions, the GRU was unable to accurately reproduce the response in the test set. Further analyses elucidate the contributions of mixture compositions to the temporal evolution of chloride. The results obtained from the GPR model unravel latent correlations through clear and explainable trends. The MLP, SVR, and KRR also provide acceptable estimates of the overall trends. The majority of mixture components exhibit an inverse relation with chloride content, while a few components demonstrate a direct correlation. These findings highlight the potential of surrogate approaches for describing the physical processes involved in chloride ingress and the associated correlations, toward the ultimate goal of enhancing the service life of civil infrastructure.
In this work, we model the wireless channel as a complex-valued Gaussian process (GP) over the transmit and receive antenna arrays. The channel covariance is characterized using an antenna-geometry-based spectral mixture covariance function (GB-SMCF), which captures the spatial structure of the antenna arrays. To address the problem of accurate channel state information (CSI) estimation from very few noisy observations, we develop a Gaussian process regression (GPR)-based channel estimation framework that employs the GB-SMCF as a prior covariance model with online hyperparameter optimization. In the proposed scheme, the full channel is learned by transmitting pilots from only a small subset of transmit antennas while receiving them at all receive antennas, resulting in noisy partial CSI at the receiver. These limited observations are then processed by the GPR framework, which updates the GB-SMCF hyperparameters online from incoming measurements and reconstructs the full CSI in real time. Simulation results demonstrate that the proposed GB-SMCF-based estimator outperforms baseline methods while reducing pilot overhead and training energy by up to 50$\%$ compared to conventional schemes.
Radiation-induced grafting (RIG) enables precise functionalization of polymer films for ion-exchange membranes, CO2-separation membranes, and battery electrolytes by generating radicals on robust substrates to graft desired monomers. However, reproducibility remains limited due to unreported variability in base-film morphology (crystallinity, grain orientation, free volume), which governs monomer diffusion, radical distribution, and the Trommsdorff effect, leading to spatial graft gradients and performance inconsistencies. We present a hierarchical stacking optimization framework with a Dirichlet's Process (SoDip), a hierarchical data-driven framework integrating: (1) a decoder-only Transformer (DeepSeek-R1) to encode textual process descriptors (irradiation source, grafting type, substrate manufacturer); (2) TabNet and XGBoost for modelling multimodal feature interactions; (3) Gaussian Process Regression (GPR) with Dirichlet Process Mixture Models (DPMM) for uncertainty quantification and heteroscedasticity; and (4) Bayesian Optimization for efficient exploration of high-dimensional synthesis space. A diverse dataset was curated using ChemDataExtractor 2.0 and WebPlotDigitizer, incorporating numerical and textual variables across hundreds of RIG studies. In cross-validation, SoDip achieved ~33% improvement over GPR while providing calibrated confidence intervals that identify low-reproducibility regimes. Its stacked architecture integrates sparse textual and numerical inputs of varying quality, outperforming prior models and establishing a foundation for reproducible, morphology-aware design in graft polymerization research.
Ground Penetrating Radar (GPR) has emerged as a pivotal tool for non-destructive evaluation of subsurface road defects. However, conventional GPR image interpretation remains heavily reliant on subjective expertise, introducing inefficiencies and inaccuracies. This study introduces a comprehensive framework to address these limitations: (1) A DCGAN-based data augmentation strategy synthesizes high-fidelity GPR images to mitigate data scarcity while preserving defect morphology under complex backgrounds; (2) A novel Multi-modal Chain and Global Attention Network (MCGA-Net) is proposed, integrating Multi-modal Chain Feature Fusion (MCFF) for hierarchical multi-scale defect representation and Global Attention Mechanism (GAM) for context-aware feature enhancement; (3) MS COCO transfer learning fine-tunes the backbone network, accelerating convergence and improving generalization. Ablation and comparison experiments validate the framework's efficacy. MCGA-Net achieves Precision (92.8%), Recall (92.5%), and mAP@50 (95.9%). In the detection of Gaussian noise, weak signals and small targets, MCGA-Net maintains robustness and outperforms other models. This work establishes a new paradigm for automated GPR-based defect detection, balancing computational efficiency with high accuracy in complex subsurface environments.
To address the issues of weak correlation between multi-view features, low recognition accuracy of small-scale targets, and insufficient robustness in complex scenarios in underground pipeline detection using 3D GPR, this paper proposes a 3D pipeline intelligent detection framework. First, based on a B/C/D-Scan three-view joint analysis strategy, a three-dimensional pipeline three-view feature evaluation method is established by cross-validating forward simulation results obtained using FDTD methods with actual measurement data. Second, the DCO-YOLO framework is proposed, which integrates DySample, CGLU, and OutlookAttention cross-dimensional correlation mechanisms into the original YOLOv11 algorithm, significantly improving the small-scale pipeline edge feature extraction capability. Furthermore, a 3D-DIoU spatial feature matching algorithm is proposed, which integrates three-dimensional geometric constraints and center distance penalty terms to achieve automated association of multi-view annotations. The three-view fusion strategy resolves inherent ambiguities in single-view detection. Experiments based on real urban underground pipeline data show that the proposed method achieves accuracy, recall, and mean average precision of 96.2%, 93.3%, and 96.7%, respectively, in complex multi-pipeline scenarios, which are 2.0%, 2.1%, and 0.9% higher than the baseline model. Ablation experiments validated the synergistic optimization effect of the dynamic feature enhancement module and Grad-CAM++ heatmap visualization demonstrated that the improved model significantly enhanced its ability to focus on pipeline geometric features. This study integrates deep learning optimization strategies with the physical characteristics of 3D GPR, offering an efficient and reliable novel technical framework for the intelligent recognition and localization of underground pipelines.
Accurate estimation of subsurface material properties, such as soil moisture, is critical for wildfire risk assessment and precision agriculture. Ground-penetrating radar (GPR) is a non-destructive geophysical technique widely used to characterize subsurface conditions. Data-driven parameter estimation methods typically require large amounts of labeled training data, which is expensive to obtain from real-world GPR scans under diverse subsurface conditions. A physics-based GPR model using the finite-difference time-domain (FDTD) method can be employed to generate large synthetic datasets through simulations across varying material parameters, which are then utilized to train data-driven models. A key limitation, however, is that simulated data (source domain) and real-world data (target domain) often follow different distributions, which can cause data-driven models trained on simulations to underperform in real-world scenarios. To address this challenge, this study proposes a novel physics-guided hierarchical domain adaptation framework with deep adversarial learning for robust subsurface material property estimation from GPR signals. The proposed framework is systematically evaluated through the laboratory tests for single- and two-layer materials, as well as the field tests for single- and two-layer materials, and is benchmarked against state-of-the-art methods, including the one-dimensional convolutional neural network (1D CNN) and domain adversarial neural network (DANN). The results demonstrate that the proposed framework achieves higher correlation coefficients R and lower Bias between the predicted and measured parameter values, along with smaller standard deviations in the estimations, thereby validating their effectiveness in bridging the domain gap between simulated and real-world radar signals and enabling efficient subsurface material property retrieval.
Almost all scientific data have uncertainties originating from different sources. Gaussian process regression (GPR) models are a natural way to model data with Gaussian-distributed uncertainties. GPR also has the benefit of reducing I/O bandwidth and storage requirements for large scientific simulations. However, the reconstruction from the GPR models suffers from high computation complexity. To make the situation worse, classic approaches for visualizing the data uncertainties, like probabilistic marching cubes, are also computationally very expensive, especially for data of high resolutions. In this paper, we accelerate the level-crossing probability calculation efficiency on GPR models by subdividing the data spatially into a hierarchical data structure and only reconstructing values adaptively in the regions that have a non-zero probability. For each region, leveraging the known GPR kernel and the saved data observations, we propose a novel approach to efficiently calculate an upper bound for the level-crossing probability inside the region and use this upper bound to make the subdivision and reconstruction decisions. We demonstrate that our value occurrence probability estimation is accurate with a low computation cost by experiments that calculate the level-crossing probability fields on different datasets.