Clothing detection is the process of identifying and categorizing different types of clothing in images or videos.




Regular physiological monitoring of maternal and fetal parameters is indispensable for ensuring safe outcomes during pregnancy and parturition. Fetal electrocardiogram (fECG) assessment is crucial to detect fetal distress and developmental anomalies. Given challenges of prenatal care due to the lack of medical professionals and the limit of accessibility, especially in remote and resource-poor areas, we develop a fECG monitoring system using novel non-contact electrodes (NCE) to record the fetal/maternal ECG (f/mECG) signals through clothes, thereby improving the comfort during measurement. The system is designed to be incorporated inside a maternity belt with data acquisition, data transmission module as well as novel NCEs. Thorough characterizations were carried out to evaluate the novel NCE against traditional wet electrodes (i.e., Ag/AgCl electrodes), showing comparable performance. A successful {preliminary pilot feasibility study} conducted with pregnant women (n = 10) between 25 and 32 weeks of gestation demonstrates the system's performance, usability and safety.




Human motion, with its inherent complexities, such as non-rigid deformations, articulated movements, clothing distortions, and frequent occlusions caused by limbs or other individuals, provides a rich and challenging source of supervision that is crucial for training robust and generalizable point trackers. Despite the suitability of human motion, acquiring extensive training data for point tracking remains difficult due to laborious manual annotation. Our proposed pipeline, AnthroTAP, addresses this by proposing an automated pipeline to generate pseudo-labeled training data, leveraging the Skinned Multi-Person Linear (SMPL) model. We first fit the SMPL model to detected humans in video frames, project the resulting 3D mesh vertices onto 2D image planes to generate pseudo-trajectories, handle occlusions using ray-casting, and filter out unreliable tracks based on optical flow consistency. A point tracking model trained on AnthroTAP annotated dataset achieves state-of-the-art performance on the TAP-Vid benchmark, surpassing other models trained on real videos while using 10,000 times less data and only 1 day in 4 GPUs, compared to 256 GPUs used in recent state-of-the-art.
3D object detection is a critical component in autonomous driving systems. It allows real-time recognition and detection of vehicles, pedestrians and obstacles under varying environmental conditions. Among existing methods, 3D object detection in the Bird's Eye View (BEV) has emerged as the mainstream framework. To guarantee a safe, robust and trustworthy 3D object detection, 3D adversarial attacks are investigated, where attacks are placed in 3D environments to evaluate the model performance, e.g. putting a film on a car, clothing a pedestrian. The vulnerability of 3D object detection models to 3D adversarial attacks serves as an important indicator to evaluate the robustness of the model against perturbations. To investigate this vulnerability, we generate non-invasive 3D adversarial objects tailored for real-world attack scenarios. Our method verifies the existence of universal adversarial objects that are spatially consistent across time and camera views. Specifically, we employ differentiable rendering techniques to accurately model the spatial relationship between adversarial objects and the target vehicle. Furthermore, we introduce an occlusion-aware module to enhance visual consistency and realism under different viewpoints. To maintain attack effectiveness across multiple frames, we design a BEV spatial feature-guided optimization strategy. Experimental results demonstrate that our approach can reliably suppress vehicle predictions from state-of-the-art 3D object detectors, serving as an important tool to test robustness of 3D object detection models before deployment. Moreover, the generated adversarial objects exhibit strong generalization capabilities, retaining its effectiveness at various positions and distances in the scene.
The high degrees of freedom and complex structure of garments present significant challenges for clothing manipulation. In this paper, we propose a general topological dynamics model to fold complex clothing. By utilizing the visible folding structure as the topological skeleton, we design a novel topological graph to represent the clothing state. This topological graph is low-dimensional and applied for complex clothing in various folding states. It indicates the constraints of clothing and enables predictions regarding clothing movement. To extract graphs from self-occlusion, we apply semantic segmentation to analyze the occlusion relationships and decompose the clothing structure. The decomposed structure is then combined with keypoint detection to generate the topological graph. To analyze the behavior of the topological graph, we employ an improved Graph Neural Network (GNN) to learn the general dynamics. The GNN model can predict the deformation of clothing and is employed to calculate the deformation Jacobi matrix for control. Experiments using jackets validate the algorithm's effectiveness to recognize and fold complex clothing with self-occlusion.
Person reidentification (ReID) technology has been considered to perform relatively well under controlled, ground-level conditions, but it breaks down when deployed in challenging real-world settings. Evidently, this is due to extreme data variability factors such as resolution, viewpoint changes, scale variations, occlusions, and appearance shifts from clothing or session drifts. Moreover, the publicly available data sets do not realistically incorporate such kinds and magnitudes of variability, which limits the progress of this technology. This paper introduces DetReIDX, a large-scale aerial-ground person dataset, that was explicitly designed as a stress test to ReID under real-world conditions. DetReIDX is a multi-session set that includes over 13 million bounding boxes from 509 identities, collected in seven university campuses from three continents, with drone altitudes between 5.8 and 120 meters. More important, as a key novelty, DetReIDX subjects were recorded in (at least) two sessions on different days, with changes in clothing, daylight and location, making it suitable to actually evaluate long-term person ReID. Plus, data were annotated from 16 soft biometric attributes and multitask labels for detection, tracking, ReID, and action recognition. In order to provide empirical evidence of DetReIDX usefulness, we considered the specific tasks of human detection and ReID, where SOTA methods catastrophically degrade performance (up to 80% in detection accuracy and over 70% in Rank-1 ReID) when exposed to DetReIDXs conditions. The dataset, annotations, and official evaluation protocols are publicly available at https://www.it.ubi.pt/DetReIDX/
The validation of LiDAR-based perception of intelligent mobile systems operating in open-world applications remains a challenge due to the variability of real environmental conditions. Virtual simulations allow the generation of arbitrary scenes under controlled conditions but lack physical sensor characteristics, such as intensity responses or material-dependent effects. In contrast, real-world data offers true sensor realism but provides less control over influencing factors, hindering sufficient validation. Existing approaches address this problem with augmentation of real-world point cloud data by transferring objects between scenes. However, these methods do not consider validation and remain limited in controllability because they rely on empirical data. We solve these limitations by proposing Point Cloud Recombination, which systematically augments captured point cloud scenes by integrating point clouds acquired from physical target objects measured in controlled laboratory environments. Thus enabling the creation of vast amounts and varieties of repeatable, physically accurate test scenes with respect to phenomena-aware occlusions with registered 3D meshes. Using the Ouster OS1-128 Rev7 sensor, we demonstrate the augmentation of real-world urban and rural scenes with humanoid targets featuring varied clothing and poses, for repeatable positioning. We show that the recombined scenes closely match real sensor outputs, enabling targeted testing, scalable failure analysis, and improved system safety. By providing controlled yet sensor-realistic data, our method enables trustworthy conclusions about the limitations of specific sensors in compound with their algorithms, e.g., object detection.




Millimeter-wave (MMW) technology has been widely utilized in human security screening applications due to its superior penetration capabilities through clothing and safety for human exposure. However, existing methods largely rely on fixed polarization modes, neglecting the potential insights from variations in target echoes with respect to incident polarization. This study provides a theoretical analysis of the cross-polarization echo power as a function of the incident polarization angle under linear polarization conditions. Additionally, based on the transmission characteristics of multi-layer medium, we extended the depth spectrum model employed in direct detection to accommodate scenarios involving multi-layered structures. Building on this foundation, by obtaining multiple depth spectrums through polarization angle scanning, we propose the Polarization Angle-Depth Matrix to characterize target across both the polarization angle and depth dimensions in direct detection. Simulations and experimental validations confirm its accuracy and practical value in detecting concealed weapons in human security screening scenarios.
Cloth manipulation is an important aspect of many everyday tasks and remains a significant challenge for robots. While existing research has made strides in tasks like cloth smoothing and folding, many studies struggle with common failure modes (crumpled corners/edges, incorrect grasp configurations) that a preliminary step of cloth layer detection can solve. We present a novel method for classifying the number of grasped cloth layers using a custom gripper equipped with DenseTact 2.0 optical tactile sensors. After grasping a cloth, the gripper performs an anthropomorphic rubbing motion while collecting optical flow, 6-axis wrench, and joint state data. Using this data in a transformer-based network achieves a test accuracy of 98.21% in correctly classifying the number of grasped layers, showing the effectiveness of our dynamic rubbing method. Evaluating different inputs and model architectures highlights the usefulness of using tactile sensor information and a transformer model for this task. A comprehensive dataset of 368 labeled trials was collected and made open-source along with this paper. Our project page is available at https://armlabstanford.github.io/dynamic-cloth-detection.
In recent research, adversarial attacks on person detectors using patches or static 3D model-based texture modifications have struggled with low success rates due to the flexible nature of human movement. Modeling the 3D deformations caused by various actions has been a major challenge. Fortunately, advancements in Neural Radiance Fields (NeRF) for dynamic human modeling offer new possibilities. In this paper, we introduce UV-Attack, a groundbreaking approach that achieves high success rates even with extensive and unseen human actions. We address the challenge above by leveraging dynamic-NeRF-based UV mapping. UV-Attack can generate human images across diverse actions and viewpoints, and even create novel actions by sampling from the SMPL parameter space. While dynamic NeRF models are capable of modeling human bodies, modifying clothing textures is challenging because they are embedded in neural network parameters. To tackle this, UV-Attack generates UV maps instead of RGB images and modifies the texture stacks. This approach enables real-time texture edits and makes the attack more practical. We also propose a novel Expectation over Pose Transformation loss (EoPT) to improve the evasion success rate on unseen poses and views. Our experiments show that UV-Attack achieves a 92.75% attack success rate against the FastRCNN model across varied poses in dynamic video settings, significantly outperforming the state-of-the-art AdvCamou attack, which only had a 28.50% ASR. Moreover, we achieve 49.5% ASR on the latest YOLOv8 detector in black-box settings. This work highlights the potential of dynamic NeRF-based UV mapping for creating more effective adversarial attacks on person detectors, addressing key challenges in modeling human movement and texture modification.




Technologies for recognizing facial attributes like race, gender, age, and emotion have several applications, such as surveillance, advertising content, sentiment analysis, and the study of demographic trends and social behaviors. Analyzing demographic characteristics based on images and analyzing facial expressions have several challenges due to the complexity of humans' facial attributes. Traditional approaches have employed CNNs and various other deep learning techniques, trained on extensive collections of labeled images. While these methods demonstrated effective performance, there remains potential for further enhancements. In this paper, we propose to utilize vision language models (VLMs) such as generative pre-trained transformer (GPT), GEMINI, large language and vision assistant (LLAVA), PaliGemma, and Microsoft Florence2 to recognize facial attributes such as race, gender, age, and emotion from images with human faces. Various datasets like FairFace, AffectNet, and UTKFace have been utilized to evaluate the solutions. The results show that VLMs are competitive if not superior to traditional techniques. Additionally, we propose "FaceScanPaliGemma"--a fine-tuned PaliGemma model--for race, gender, age, and emotion recognition. The results show an accuracy of 81.1%, 95.8%, 80%, and 59.4% for race, gender, age group, and emotion classification, respectively, outperforming pre-trained version of PaliGemma, other VLMs, and SotA methods. Finally, we propose "FaceScanGPT", which is a GPT-4o model to recognize the above attributes when several individuals are present in the image using a prompt engineered for a person with specific facial and/or physical attributes. The results underscore the superior multitasking capability of FaceScanGPT to detect the individual's attributes like hair cut, clothing color, postures, etc., using only a prompt to drive the detection and recognition tasks.