Abstract:Safety alignment of Large Language Models (LLMs) can be compromised with manual jailbreak attacks and (automatic) adversarial attacks. Recent work suggests that patching LLMs against these attacks is possible: manual jailbreak attacks are human-readable but often limited and public, making them easy to block; adversarial attacks generate gibberish prompts that can be detected using perplexity-based filters. In this paper, we show that these solutions may be too optimistic. We propose an interpretable adversarial attack, \texttt{AutoDAN}, that combines the strengths of both types of attacks. It automatically generates attack prompts that bypass perplexity-based filters while maintaining a high attack success rate like manual jailbreak attacks. These prompts are interpretable and diverse, exhibiting strategies commonly used in manual jailbreak attacks, and transfer better than their non-readable counterparts when using limited training data or a single proxy model. We also customize \texttt{AutoDAN}'s objective to leak system prompts, another jailbreak application not addressed in the adversarial attack literature. %, demonstrating the versatility of the approach. We can also customize the objective of \texttt{AutoDAN} to leak system prompts, beyond the ability to elicit harmful content from the model, demonstrating the versatility of the approach. Our work provides a new way to red-team LLMs and to understand the mechanism of jailbreak attacks.
Abstract:We propose novel evaluations for mathematical reasoning capabilities of Large Language Models (LLMs) based on mathematical misconceptions. Our primary approach is to simulate LLMs as a novice learner and an expert tutor, aiming to identify the incorrect answer to math question resulted from a specific misconception and to recognize the misconception(s) behind an incorrect answer, respectively. Contrary to traditional LLMs-based mathematical evaluations that focus on answering math questions correctly, our approach takes inspirations from principles in educational learning sciences. We explicitly ask LLMs to mimic a novice learner by answering questions in a specific incorrect manner based on incomplete knowledge; and to mimic an expert tutor by identifying misconception(s) corresponding to an incorrect answer to a question. Using simple grade-school math problems, our experiments reveal that, while LLMs can easily answer these questions correctly, they struggle to identify 1) the incorrect answer corresponding to specific incomplete knowledge (misconceptions); 2) the misconceptions that explain particular incorrect answers. Our study indicates new opportunities for enhancing LLMs' math reasoning capabilities, especially on developing robust student simulation and expert tutoring models in the educational applications such as intelligent tutoring systems.
Abstract:We study the new problem of automatic question generation (QG) from multi-modal sources containing images and texts, significantly expanding the scope of most of the existing work that focuses exclusively on QG from only textual sources. We propose a simple solution for our new problem, called MultiQG-TI, which enables a text-only question generator to process visual input in addition to textual input. Specifically, we leverage an image-to-text model and an optical character recognition model to obtain the textual description of the image and extract any texts in the image, respectively, and then feed them together with the input texts to the question generator. We only fine-tune the question generator while keeping the other components fixed. On the challenging ScienceQA dataset, we demonstrate that MultiQG-TI significantly outperforms ChatGPT with few-shot prompting, despite having hundred-times less trainable parameters. Additional analyses empirically confirm the necessity of both visual and textual signals for QG and show the impact of various modeling choices.
Abstract:Reading comprehension is a crucial skill in many aspects of education, including language learning, cognitive development, and fostering early literacy skills in children. Automated answer-aware reading comprehension question generation has significant potential to scale up learner support in educational activities. One key technical challenge in this setting is that there can be multiple questions, sometimes very different from each other, with the same answer; a trained question generation method may not necessarily know which question human educators would prefer. To address this challenge, we propose 1) a data augmentation method that enriches the training dataset with diverse questions given the same context and answer and 2) an overgenerate-and-rank method to select the best question from a pool of candidates. We evaluate our method on the FairytaleQA dataset, showing a 5% absolute improvement in ROUGE-L over the best existing method. We also demonstrate the effectiveness of our method in generating harder, "implicit" questions, where the answers are not contained in the context as text spans.
Abstract:Solutions to math word problems (MWPs) with step-by-step explanations are valuable, especially in education, to help students better comprehend problem-solving strategies. Most existing approaches only focus on obtaining the final correct answer. A few recent approaches leverage intermediate solution steps to improve final answer correctness but often cannot generate coherent steps with a clear solution strategy. Contrary to existing work, we focus on improving the correctness and coherence of the intermediate solutions steps. We propose a step-by-step planning approach for intermediate solution generation, which strategically plans the generation of the next solution step based on the MWP and the previous solution steps. Our approach first plans the next step by predicting the necessary math operation needed to proceed, given history steps, then generates the next step, token-by-token, by prompting a language model with the predicted math operation. Experiments on the GSM8K dataset demonstrate that our approach improves the accuracy and interpretability of the solution on both automatic metrics and human evaluation.
Abstract:This paper investigates the problem of Named Entity Recognition (NER) for extreme low-resource languages with only a few hundred tagged data samples. NER is a fundamental task in Natural Language Processing (NLP). A critical driver accelerating NER systems' progress is the existence of large-scale language corpora that enable NER systems to achieve outstanding performance in languages such as English and French with abundant training data. However, NER for low-resource languages remains relatively unexplored. In this paper, we introduce Mask Augmented Named Entity Recognition (MANER), a new methodology that leverages the distributional hypothesis of pre-trained masked language models (MLMs) for NER. The <mask> token in pre-trained MLMs encodes valuable semantic contextual information. MANER re-purposes the <mask> token for NER prediction. Specifically, we prepend the <mask> token to every word in a sentence for which we would like to predict the named entity tag. During training, we jointly fine-tune the MLM and a new NER prediction head attached to each <mask> token. We demonstrate that MANER is well-suited for NER in low-resource languages; our experiments show that for 100 languages with as few as 100 training examples, it improves on state-of-the-art methods by up to 48% and by 12% on average on F1 score. We also perform detailed analyses and ablation studies to understand the scenarios that are best-suited to MANER.
Abstract:We study the interpolation capabilities of implicit neural representations (INRs) of images. In principle, INRs promise a number of advantages, such as continuous derivatives and arbitrary sampling, being freed from the restrictions of a raster grid. However, empirically, INRs have been observed to poorly interpolate between the pixels of the fit image; in other words, they do not inherently possess a suitable prior for natural images. In this paper, we propose to address and improve INRs' interpolation capabilities by explicitly integrating image prior information into the INR architecture via deep decoder, a specific implementation of the deep image prior (DIP). Our method, which we call TITAN, leverages a residual connection from the input which enables integrating the principles of the grid-based DIP into the grid-free INR. Through super-resolution and computed tomography experiments, we demonstrate that our method significantly improves upon classic INRs, thanks to the induced natural image bias. We also find that by constraining the weights to be sparse, image quality and sharpness are enhanced, increasing the Lipschitz constant.
Abstract:In this competition, participants will address two fundamental causal challenges in machine learning in the context of education using time-series data. The first is to identify the causal relationships between different constructs, where a construct is defined as the smallest element of learning. The second challenge is to predict the impact of learning one construct on the ability to answer questions on other constructs. Addressing these challenges will enable optimisation of students' knowledge acquisition, which can be deployed in a real edtech solution impacting millions of students. Participants will run these tasks in an idealised environment with synthetic data and a real-world scenario with evaluation data collected from a series of A/B tests.
Abstract:Generating new molecules with specified chemical and biological properties via generative models has emerged as a promising direction for drug discovery. However, existing methods require extensive training/fine-tuning with a large dataset, often unavailable in real-world generation tasks. In this work, we propose a new retrieval-based framework for controllable molecule generation. We use a small set of exemplar molecules, i.e., those that (partially) satisfy the design criteria, to steer the pre-trained generative model towards synthesizing molecules that satisfy the given design criteria. We design a retrieval mechanism that retrieves and fuses the exemplar molecules with the input molecule, which is trained by a new self-supervised objective that predicts the nearest neighbor of the input molecule. We also propose an iterative refinement process to dynamically update the generated molecules and retrieval database for better generalization. Our approach is agnostic to the choice of generative models and requires no task-specific fine-tuning. On various tasks ranging from simple design criteria to a challenging real-world scenario for designing lead compounds that bind to the SARS-CoV-2 main protease, we demonstrate our approach extrapolates well beyond the retrieval database, and achieves better performance and wider applicability than previous methods.
Abstract:Automated scoring of open-ended student responses has the potential to significantly reduce human grader effort. Recent advances in automated scoring often leverage textual representations based on pre-trained language models such as BERT and GPT as input to scoring models. Most existing approaches train a separate model for each item/question, which is suitable for scenarios such as essay scoring where items can be quite different from one another. However, these approaches have two limitations: 1) they fail to leverage item linkage for scenarios such as reading comprehension where multiple items may share a reading passage; 2) they are not scalable since storing one model per item becomes difficult when models have a large number of parameters. In this paper, we report our (grand prize-winning) solution to the National Assessment of Education Progress (NAEP) automated scoring challenge for reading comprehension. Our approach, in-context BERT fine-tuning, produces a single shared scoring model for all items with a carefully-designed input structure to provide contextual information on each item. We demonstrate the effectiveness of our approach via local evaluations using the training dataset provided by the challenge. We also discuss the biases, common error types, and limitations of our approach.