Abstract:Generative artificial intelligence (AI) systems are trained on large data corpora to generate new pieces of text, images, videos, and other media. There is growing concern that such systems may infringe on the copyright interests of training data contributors. To address the copyright challenges of generative AI, we propose a framework that compensates copyright owners proportionally to their contributions to the creation of AI-generated content. The metric for contributions is quantitatively determined by leveraging the probabilistic nature of modern generative AI models and using techniques from cooperative game theory in economics. This framework enables a platform where AI developers benefit from access to high-quality training data, thus improving model performance. Meanwhile, copyright owners receive fair compensation, driving the continued provision of relevant data for generative model training. Experiments demonstrate that our framework successfully identifies the most relevant data sources used in artwork generation, ensuring a fair and interpretable distribution of revenues among copyright owners.
Abstract:Reinforcement learning with human feedback (RLHF) is an emerging paradigm to align models with human preferences. Typically, RLHF aggregates preferences from multiple individuals who have diverse viewpoints that may conflict with each other. Our work \textit{initiates} the theoretical study of multi-party RLHF that explicitly models the diverse preferences of multiple individuals. We show how traditional RLHF approaches can fail since learning a single reward function cannot capture and balance the preferences of multiple individuals. To overcome such limitations, we incorporate meta-learning to learn multiple preferences and adopt different social welfare functions to aggregate the preferences across multiple parties. We focus on the offline learning setting and establish sample complexity bounds, along with efficiency and fairness guarantees, for optimizing diverse social welfare functions such as Nash, Utilitarian, and Leximin welfare functions. Our results show a separation between the sample complexities of multi-party RLHF and traditional single-party RLHF. Furthermore, we consider a reward-free setting, where each individual's preference is no longer consistent with a reward model, and give pessimistic variants of the von Neumann Winner based on offline preference data. Taken together, our work showcases the advantage of multi-party RLHF but also highlights its more demanding statistical complexity.
Abstract:Creativity serves as a cornerstone for societal progress and innovation. With the rise of advanced generative AI models capable of tasks once reserved for human creativity, the study of AI's creative potential becomes imperative for its responsible development and application. In this paper, we provide a theoretical answer to the question of whether AI can be creative. We prove in theory that AI can be as creative as humans under the condition that AI can fit the existing data generated by human creators. Therefore, the debate on AI's creativity is reduced into the question of its ability of fitting a massive amount of data. To arrive at this conclusion, this paper first addresses the complexities in defining creativity by introducing a new concept called Relative Creativity. Instead of trying to define creativity universally, we shift the focus to whether AI can match the creative abilities of a hypothetical human. This perspective draws inspiration from the Turing Test, expanding upon it to address the challenges and subjectivities inherent in assessing creativity. This methodological shift leads to a statistically quantifiable assessment of AI's creativity, which we term Statistical Creativity. This concept allows for comparisons of AI's creative abilities with those of specific human groups, and facilitates the theoretical findings of AI's creative potential. Building on this foundation, we discuss the application of statistical creativity in prompt-conditioned autoregressive models, providing a practical means for evaluating creative abilities of contemporary AI models, such as Large Language Models (LLMs). In addition to defining and analyzing creativity, we introduce an actionable training guideline, effectively bridging the gap between theoretical quantification of creativity and practical model training.
Abstract:As the number of large language models (LLMs) released to the public grows, there is a pressing need to understand the safety implications associated with these models learning from third-party custom finetuning data. We explore the behavior of LLMs finetuned on noisy custom data containing unsafe content, represented by datasets that contain biases, toxicity, and harmfulness, finding that while aligned LLMs can readily learn this unsafe content, they also tend to forget it more significantly than other examples when subsequently finetuned on safer content. Drawing inspiration from the discrepancies in forgetting, we introduce the "ForgetFilter" algorithm, which filters unsafe data based on how strong the model's forgetting signal is for that data. We demonstrate that the ForgetFilter algorithm ensures safety in customized finetuning without compromising downstream task performance, unlike sequential safety finetuning. ForgetFilter outperforms alternative strategies like replay and moral self-correction in curbing LLMs' ability to assimilate unsafe content during custom finetuning, e.g. 75% lower than not applying any safety measures and 62% lower than using self-correction in toxicity score.
Abstract:The recent explosion in the capabilities of large language models has led to a wave of interest in how best to prompt a model to perform a given task. While it may be tempting to simply choose a prompt based on average performance on a validation set, this can lead to a deployment where unexpectedly poor responses are generated, especially for the worst-off users. To mitigate this prospect, we propose Prompt Risk Control, a lightweight framework for selecting a prompt based on rigorous upper bounds on families of informative risk measures. We offer methods for producing bounds on a diverse set of metrics, including quantities that measure worst-case responses and disparities in generation quality across the population of users. In addition, we extend the underlying statistical bounding techniques to accommodate the possibility of distribution shifts in deployment. Experiments on applications such as open-ended chat, medical question summarization, and code generation highlight how such a framework can foster responsible deployment by reducing the risk of the worst outcomes.
Abstract:Standard approaches for uncertainty quantification in deep learning and physics-informed learning have persistent limitations. Indicatively, strong assumptions regarding the data likelihood are required, the performance highly depends on the selection of priors, and the posterior can be sampled only approximately, which leads to poor approximations because of the associated computational cost. This paper introduces and studies confidence interval (CI) estimation for deterministic partial differential equations as a novel problem. That is, to propagate confidence, in the form of CIs, from data locations to the entire domain with probabilistic guarantees. We propose a method, termed Physics-Informed Confidence Propagation (PICProp), based on bi-level optimization to compute a valid CI without making heavy assumptions. We provide a theorem regarding the validity of our method, and computational experiments, where the focus is on physics-informed learning.
Abstract:Large vision-language models (LVLMs) have shown remarkable abilities in understanding visual information with human languages. However, LVLMs still suffer from object hallucination, which is the problem of generating descriptions that include objects that do not actually exist in the images. This can negatively impact many vision-language tasks, such as visual summarization and reasoning. To address this issue, we propose a simple yet powerful algorithm, LVLM Hallucination Revisor (LURE), to post-hoc rectify object hallucination in LVLMs by reconstructing less hallucinatory descriptions. LURE is grounded in a rigorous statistical analysis of the key factors underlying object hallucination, including co-occurrence (the frequent appearance of certain objects alongside others in images), uncertainty (objects with higher uncertainty during LVLM decoding), and object position (hallucination often appears in the later part of the generated text). LURE can also be seamlessly integrated with any LVLMs. We evaluate LURE on six open-source LVLMs, achieving a 23% improvement in general object hallucination evaluation metrics over the previous best approach. In both GPT and human evaluations, LURE consistently ranks at the top. Our data and code are available at https://github.com/YiyangZhou/LURE.
Abstract:Explicit finite-sample statistical guarantees on model performance are an important ingredient in responsible machine learning. Previous work has focused mainly on bounding either the expected loss of a predictor or the probability that an individual prediction will incur a loss value in a specified range. However, for many high-stakes applications, it is crucial to understand and control the dispersion of a loss distribution, or the extent to which different members of a population experience unequal effects of algorithmic decisions. We initiate the study of distribution-free control of statistical dispersion measures with societal implications and propose a simple yet flexible framework that allows us to handle a much richer class of statistical functionals beyond previous work. Our methods are verified through experiments in toxic comment detection, medical imaging, and film recommendation.
Abstract:Numerous deep learning algorithms have been inspired by and understood via the notion of information bottleneck, where unnecessary information is (often implicitly) minimized while task-relevant information is maximized. However, a rigorous argument for justifying why it is desirable to control information bottlenecks has been elusive. In this paper, we provide the first rigorous learning theory for justifying the benefit of information bottleneck in deep learning by mathematically relating information bottleneck to generalization errors. Our theory proves that controlling information bottleneck is one way to control generalization errors in deep learning, although it is not the only or necessary way. We investigate the merit of our new mathematical findings with experiments across a range of architectures and learning settings. In many cases, generalization errors are shown to correlate with the degree of information bottleneck: i.e., the amount of the unnecessary information at hidden layers. This paper provides a theoretical foundation for current and future methods through the lens of information bottleneck. Our new generalization bounds scale with the degree of information bottleneck, unlike the previous bounds that scale with the number of parameters, VC dimension, Rademacher complexity, stability or robustness. Our code is publicly available at: https://github.com/xu-ji/information-bottleneck
Abstract:As machine learning has been deployed ubiquitously across applications in modern data science, algorithmic fairness has become a great concern and varieties of fairness criteria have been proposed. Among them, imposing fairness constraints during learning, i.e. in-processing fair training, has been a popular type of training method because they don't require accessing sensitive attributes during test time in contrast to post-processing methods. Although imposing fairness constraints have been studied extensively for classical machine learning models, the effect these techniques have on deep neural networks is still unclear. Recent research has shown that adding fairness constraints to the objective function leads to severe over-fitting to fairness criteria in large models, and how to solve this challenge is an important open question. To address this challenge, we leverage the wisdom and power of pre-training and fine-tuning and develop a simple but novel framework to train fair neural networks in an efficient and inexpensive way. We conduct comprehensive experiments on two popular image datasets with state-of-art architectures under different fairness notions to show that last-layer fine-tuning is sufficient for promoting fairness of the deep neural network. Our framework brings new insights into representation learning in training fair neural networks.