Abstract:Performativity of predictions refers to the phenomena that prediction-informed decisions may influence the target they aim to predict, which is widely observed in policy-making in social sciences and economics. In this paper, we initiate the study of statistical inference under performativity. Our contribution is two-fold. First, we build a central limit theorem for estimation and inference under performativity, which enables inferential purposes in policy-making such as constructing confidence intervals or testing hypotheses. Second, we further leverage the derived central limit theorem to investigate prediction-powered inference (PPI) under performativity, which is based on a small labeled dataset and a much larger dataset of machine-learning predictions. This enables us to obtain more precise estimation and improved confidence regions for the model parameter (i.e., policy) of interest in performative prediction. We demonstrate the power of our framework by numerical experiments. To the best of our knowledge, this paper is the first one to establish statistical inference under performativity, which brings up new challenges and inference settings that we believe will add significant values to policy-making, statistics, and machine learning.
Abstract:Reinforcement learning with human feedback (RLHF) is an emerging paradigm to align models with human preferences. Typically, RLHF aggregates preferences from multiple individuals who have diverse viewpoints that may conflict with each other. Our work \textit{initiates} the theoretical study of multi-party RLHF that explicitly models the diverse preferences of multiple individuals. We show how traditional RLHF approaches can fail since learning a single reward function cannot capture and balance the preferences of multiple individuals. To overcome such limitations, we incorporate meta-learning to learn multiple preferences and adopt different social welfare functions to aggregate the preferences across multiple parties. We focus on the offline learning setting and establish sample complexity bounds, along with efficiency and fairness guarantees, for optimizing diverse social welfare functions such as Nash, Utilitarian, and Leximin welfare functions. Our results show a separation between the sample complexities of multi-party RLHF and traditional single-party RLHF. Furthermore, we consider a reward-free setting, where each individual's preference is no longer consistent with a reward model, and give pessimistic variants of the von Neumann Winner based on offline preference data. Taken together, our work showcases the advantage of multi-party RLHF but also highlights its more demanding statistical complexity.