Abstract:Calibrating blackbox machine learning models to achieve risk control is crucial to ensure reliable decision-making. A rich line of literature has been studying how to calibrate a model so that its predictions satisfy explicit finite-sample statistical guarantees under a fixed, static, and unknown data-generating distribution. However, prediction-supported decisions may influence the outcome they aim to predict, a phenomenon named performativity of predictions, which is commonly seen in social science and economics. In this paper, we introduce Performative Risk Control, a framework to calibrate models to achieve risk control under performativity with provable theoretical guarantees. Specifically, we provide an iteratively refined calibration process, where we ensure the predictions are improved and risk-controlled throughout the process. We also study different types of risk measures and choices of tail bounds. Lastly, we demonstrate the effectiveness of our framework by numerical experiments on the task of predicting credit default risk. To the best of our knowledge, this work is the first one to study statistically rigorous risk control under performativity, which will serve as an important safeguard against a wide range of strategic manipulation in decision-making processes.
Abstract:Large Language Models (LLMs) have demonstrated strong generative capabilities but remain prone to inconsistencies and hallucinations. We introduce Peer Elicitation Games (PEG), a training-free, game-theoretic framework for aligning LLMs through a peer elicitation mechanism involving a generator and multiple discriminators instantiated from distinct base models. Discriminators interact in a peer evaluation setting, where rewards are computed using a determinant-based mutual information score that provably incentivizes truthful reporting without requiring ground-truth labels. We establish theoretical guarantees showing that each agent, via online learning, achieves sublinear regret in the sense their cumulative performance approaches that of the best fixed truthful strategy in hindsight. Moreover, we prove last-iterate convergence to a truthful Nash equilibrium, ensuring that the actual policies used by agents converge to stable and truthful behavior over time. Empirical evaluations across multiple benchmarks demonstrate significant improvements in factual accuracy. These results position PEG as a practical approach for eliciting truthful behavior from LLMs without supervision or fine-tuning.
Abstract:Conformal prediction (CP), a distribution-free uncertainty quantification (UQ) framework, reliably provides valid predictive inference for black-box models. CP constructs prediction sets that contain the true output with a specified probability. However, modern data science diverse modalities, along with increasing data and model complexity, challenge traditional CP methods. These developments have spurred novel approaches to address evolving scenarios. This survey reviews the foundational concepts of CP and recent advancements from a data-centric perspective, including applications to structured, unstructured, and dynamic data. We also discuss the challenges and opportunities CP faces in large-scale data and models.