Abstract:Collaborative Filtering (CF) based recommendation methods have been widely studied, which can be generally categorized into two types, i.e., representation learning-based CF methods and matching function learning-based CF methods. Representation learning tries to learn a common low dimensional space for the representations of users and items. In this case, a user and item match better if they have higher similarity in that common space. Matching function learning tries to directly learn the complex matching function that maps user-item pairs to matching scores. Although both methods are well developed, they suffer from two fundamental flaws, i.e., the representation learning resorts to applying a dot product which has limited expressiveness on the latent features of users and items, while the matching function learning has weakness in capturing low-rank relations. To overcome such flaws, we propose a novel recommendation model named Balanced Collaborative Filtering Network (BCFNet), which has the strengths of the two types of methods. In addition, an attention mechanism is designed to better capture the hidden information within implicit feedback and strengthen the learning ability of the neural network. Furthermore, a balance module is designed to alleviate the over-fitting issue in DNNs. Extensive experiments on eight real-world datasets demonstrate the effectiveness of the proposed model.
Abstract:The performance of meta-learning approaches for few-shot learning generally depends on three aspects: features suitable for comparison, the classifier ( base learner ) suitable for low-data scenarios, and valuable information from the samples to classify. In this work, we make improvements for the last two aspects: 1) although there are many effective base learners, there is a trade-off between generalization performance and computational overhead, so we introduce multi-class least squares support vector machine as our base learner which obtains better generation than existing ones with less computational overhead; 2) further, in order to utilize the information from the query samples, we propose two simple and effective transductive modules which modify the support set using the query samples, i.e., adjusting the support samples basing on the attention mechanism and adding the prototypes of the query set with pseudo labels to the support set as the pseudo support samples. These two modules significantly improve the few-shot classification accuracy, especially for the difficult 1-shot setting. Our model, denoted as FSLSTM (Few-Shot learning with LSsvm base learner and Transductive Modules), achieves state-of-the-art performance on miniImageNet and CIFAR-FS few-shot learning benchmarks.
Abstract:Lifelong or continual learning remains to be a challenge for artificial neural network, as it is required to be both stable for preservation of old knowledge and plastic for acquisition of new knowledge. It is common to see previous experience get overwritten, which leads to the well-known issue of catastrophic forgetting, especially in the scenario of class-incremental learning (Class-IL). Recently, many lifelong learning methods have been proposed to avoid catastrophic forgetting. However, models which learn without replay of the input data, would encounter another problem which has been ignored, and we refer to it as prior information loss (PIL). In training procedure of Class-IL, as the model has no knowledge about following tasks, it would only extract features necessary for tasks learned so far, whose information is insufficient for joint classification. In this paper, our empirical results on several image datasets show that PIL limits the performance of current state-of-the-art method for Class-IL, the orthogonal weights modification (OWM) algorithm. Furthermore, we propose to combine self-supervised learning, which can provide effective representations without requiring labels, with Class-IL to partly get around this problem. Experiments show superiority of proposed method to OWM, as well as other strong baselines.
Abstract:The ability of intelligent agents to learn and remember multiple tasks sequentially is crucial to achieving artificial general intelligence. Many continual learning (CL) methods have been proposed to overcome catastrophic forgetting. Catastrophic forgetting notoriously impedes the sequential learning of neural networks as the data of previous tasks are unavailable. In this paper we focus on class incremental learning, a challenging CL scenario, in which classes of each task are disjoint and task identity is unknown during test. For this scenario, generative replay is an effective strategy which generates and replays pseudo data for previous tasks to alleviate catastrophic forgetting. However, it is not trivial to learn a generative model continually for relatively complex data. Based on recently proposed orthogonal weight modification (OWM) algorithm which can keep previously learned input-output mappings invariant approximately when learning new tasks, we propose to directly generate and replay feature. Empirical results on image and text datasets show our method can improve OWM consistently by a significant margin while conventional generative replay always results in a negative effect. Our method also beats a state-of-the-art generative replay method and is competitive with a strong baseline based on real data storage.
Abstract:Autoregressive sequence models achieve state-of-the-art performance in domains like machine translation. However, due to the autoregressive factorization nature, these models suffer from heavy latency during inference. Recently, non-autoregressive sequence models were proposed to speed up the inference time. However, these models assume that the decoding process of each token is conditionally independent of others. Such a generation process sometimes makes the output sentence inconsistent, and thus the learned non-autoregressive models could only achieve inferior accuracy compared to their autoregressive counterparts. To improve then decoding consistency and reduce the inference cost at the same time, we propose to incorporate a structured inference module into the non-autoregressive models. Specifically, we design an efficient approximation for Conditional Random Fields (CRF) for non-autoregressive sequence models, and further propose a dynamic transition technique to model positional contexts in the CRF. Experiments in machine translation show that while increasing little latency (8~14ms), our model could achieve significantly better translation performance than previous non-autoregressive models on different translation datasets. In particular, for the WMT14 En-De dataset, our model obtains a BLEU score of 26.80, which largely outperforms the previous non-autoregressive baselines and is only 0.61 lower in BLEU than purely autoregressive models.
Abstract:We propose Dynamically Pruned Message Passing Networks (DPMPN) for large-scale knowledge graph reasoning. In contrast to existing models, embedding-based or path-based, we learn an input-dependent subgraph to explicitly model a sequential reasoning process. Each subgraph is dynamically constructed, expanding itself selectively under a flow-style attention mechanism. In this way, we can not only construct graphical explanations to interpret prediction, but also prune message passing in Graph Neural Networks (GNNs) to scale with the size of graphs. We take the inspiration from the consciousness prior proposed by Bengio to design a two-GNN framework to encode global input-invariant graph-structured representation and learn local input-dependent one coordinated by an attention module. Experiments show the reasoning capability in our model that is providing a clear graphical explanation as well as predicting results accurately, outperforming most state-of-the-art methods in knowledge base completion tasks.
Abstract:The ability of reasoning beyond data fitting is substantial to deep learning systems in order to make a leap forward towards artificial general intelligence. A lot of efforts have been made to model neural-based reasoning as an iterative decision-making process based on recurrent networks and reinforcement learning. Instead, inspired by the consciousness prior proposed by Yoshua Bengio, we explore reasoning with the notion of attentive awareness from a cognitive perspective, and formulate it in the form of attentive message passing on graphs, called neural consciousness flow (NeuCFlow). Aiming to bridge the gap between deep learning systems and reasoning, we propose an attentive computation framework with a three-layer architecture, which consists of an unconsciousness flow layer, a consciousness flow layer, and an attention flow layer. We implement the NeuCFlow model with graph neural networks (GNNs) and conditional transition matrices. Our attentive computation greatly reduces the complexity of vanilla GNN-based methods, capable of running on large-scale graphs. We validate our model for knowledge graph reasoning by solving a series of knowledge base completion (KBC) tasks. The experimental results show NeuCFlow significantly outperforms previous state-of-the-art KBC methods, including the embedding-based and the path-based. The reproducible code can be found by the link below.
Abstract:Recurrent Neural Networks (RNNs) are widely used in the field of natural language processing (NLP), ranging from text categorization to question answering and machine translation. However, RNNs generally read the whole text from beginning to end or vice versa sometimes, which makes it inefficient to process long texts. When reading a long document for a categorization task, such as topic categorization, large quantities of words are irrelevant and can be skipped. To this end, we propose Leap-LSTM, an LSTM-enhanced model which dynamically leaps between words while reading texts. At each step, we utilize several feature encoders to extract messages from preceding texts, following texts and the current word, and then determine whether to skip the current word. We evaluate Leap-LSTM on several text categorization tasks: sentiment analysis, news categorization, ontology classification and topic classification, with five benchmark data sets. The experimental results show that our model reads faster and predicts better than standard LSTM. Compared to previous models which can also skip words, our model achieves better trade-offs between performance and efficiency.
Abstract:Keyphrase extraction from documents is useful to a variety of applications such as information retrieval and document summarization. This paper presents an end-to-end method called DivGraphPointer for extracting a set of diversified keyphrases from a document. DivGraphPointer combines the advantages of traditional graph-based ranking methods and recent neural network-based approaches. Specifically, given a document, a word graph is constructed from the document based on word proximity and is encoded with graph convolutional networks, which effectively capture document-level word salience by modeling long-range dependency between words in the document and aggregating multiple appearances of identical words into one node. Furthermore, we propose a diversified point network to generate a set of diverse keyphrases out of the word graph in the decoding process. Experimental results on five benchmark data sets show that our proposed method significantly outperforms the existing state-of-the-art approaches.
Abstract:We study the problem of learning representations of entities and relations in knowledge graphs for predicting missing links. The success of such a task heavily relies on the ability of modeling and inferring the patterns of (or between) the relations. In this paper, we present a new approach for knowledge graph embedding called RotatE, which is able to model and infer various relation patterns including: symmetry/antisymmetry, inversion, and composition. Specifically, the RotatE model defines each relation as a rotation from the source entity to the target entity in the complex vector space. In addition, we propose a novel self-adversarial negative sampling technique for efficiently and effectively training the RotatE model. Experimental results on multiple benchmark knowledge graphs show that the proposed RotatE model is not only scalable, but also able to infer and model various relation patterns and significantly outperform existing state-of-the-art models for link prediction.