Abstract:Transferring reasoning capabilities from larger language models to smaller ones through supervised fine-tuning often fails counterintuitively, with performance degrading despite access to high-quality teacher demonstrations. We identify that this failure stems from distributional misalignment: reasoning traces from larger models contain tokens that are low probability under the student's distribution, exceeding the internal representation capacity of smaller architectures and creating learning barriers rather than helpful guidance. We propose Reverse Speculative Decoding (RSD), a mechanism for generating student-friendly reasoning traces in which the teacher model proposes candidate tokens but the student model determines acceptance based on its own probability distributions, filtering low probability tokens. When applied to Qwen3-0.6B, direct distillation of s1K-1.1 reasoning trace data degrades average performance across major reasoning benchmarks by 20.5\%, while the same model trained on RSD-generated reasoning traces achieves meaningful improvements of 4.9\%. Our analysis reveals that low probability tokens constitute the critical bottleneck in reasoning ability transfer. However, cross-model experiments demonstrate that RSD traces are model-specific rather than universally applicable, indicating that distributional alignment must be tailored for each student architecture's unique internal representation.
Abstract:Autoregressive (AR) language models generate text one token at a time, which limits their inference speed. Diffusion-based language models offer a promising alternative, as they can decode multiple tokens in parallel. However, we identify a key bottleneck in current diffusion LMs: the long decoding-window problem, where tokens generated far from the input context often become irrelevant or repetitive. Previous solutions like semi-autoregressive address this issue by splitting windows into blocks, but this sacrifices speed and bidirectionality, eliminating the main advantage of diffusion models. To overcome this, we propose Convolutional decoding (Conv), a normalization-based method that narrows the decoding window without hard segmentation, leading to better fluency and flexibility. Additionally, we introduce Rejecting Rule-based Fine-Tuning (R2FT), a post-hoc training scheme that better aligns tokens at positions far from context. Our methods achieve state-of-the-art results on open-ended generation benchmarks (e.g., AlpacaEval) among diffusion LM baselines, with significantly lower step size than previous works, demonstrating both speed and quality improvements.
Abstract:Hallucination prediction in large language models (LLMs) is often interpreted as a sign of self-awareness. However, we argue that such performance can arise from question-side shortcuts rather than true model-side introspection. To disentangle these factors, we propose the Approximate Question-side Effect (AQE), which quantifies the contribution of question-awareness. Our analysis across multiple datasets reveals that much of the reported success stems from exploiting superficial patterns in questions. We further introduce SCAO (Semantic Compression by Answering in One word), a method that enhances the use of model-side signals. Experiments show that SCAO achieves strong and consistent performance, particularly in settings with reduced question-side cues, highlighting its effectiveness in fostering genuine self-awareness in LLMs.
Abstract:While research on dialogue response generation has primarily focused on generating coherent responses conditioning on textual context, the critical question of when to respond grounded on the temporal context remains underexplored. To bridge this gap, we propose a novel task called timely dialogue response generation and introduce the TimelyChat benchmark, which evaluates the capabilities of language models to predict appropriate time intervals and generate time-conditioned responses. Additionally, we construct a large-scale training dataset by leveraging unlabeled event knowledge from a temporal commonsense knowledge graph and employing a large language model (LLM) to synthesize 55K event-driven dialogues. We then train Timer, a dialogue agent designed to proactively predict time intervals and generate timely responses that align with those intervals. Experimental results show that Timer outperforms prompting-based LLMs and other fine-tuned baselines in both turn-level and dialogue-level evaluations. We publicly release our data, model, and code.
Abstract:Multimodal chatbots have become one of the major topics for dialogue systems in both research community and industry. Recently, researchers have shed light on the multimodality of responses as well as dialogue contexts. This work explores how a dialogue system can output responses in various modalities such as text and image. To this end, we first formulate a multimodal dialogue response retrieval task for retrieval-based systems as the combination of three subtasks. We then propose three integration methods based on a two-step approach and an end-to-end approach, and compare the merits and demerits of each method. Experimental results on two datasets demonstrate that the end-to-end approach achieves comparable performance without an intermediate step in the two-step approach. In addition, a parameter sharing strategy not only reduces the number of parameters but also boosts performance by transferring knowledge across the subtasks and the modalities.
Abstract:Large language models (LLMs) have recently achieved impressive performance across a wide range of natural language tasks and are now widely used in real-world applications. Among them, black-box LLMs--served via APIs without access to model internals--are especially dominant due to their scalability and ease of deployment. Despite their strong capabilities, these models typically produce generalized responses that overlook personal preferences and reasoning styles. This has led to growing interest in black-box LLM personalization, which aims to tailor model outputs to user-specific context without modifying model parameters. However, existing approaches primarily focus on response-level personalization, attempting to match final outputs without modeling personal thought process. To address this limitation, we propose RPM, a framework for reasoning-level personalization that aligns the model's reasoning process with a user's personalized logic. RPM first constructs statistical user-specific factors by extracting and grouping response-influential features from user history. It then builds personalized reasoning paths that reflect how these factors are used in context. In the inference stage, RPM retrieves reasoning-aligned examples for new queries via feature-level similarity and performs inference conditioned on the structured factors and retrieved reasoning paths, enabling the model to follow user-specific reasoning trajectories. This reasoning-level personalization enhances both predictive accuracy and interpretability by grounding model outputs in user-specific logic through structured information. Extensive experiments across diverse tasks show that RPM consistently outperforms response-level personalization methods, demonstrating the effectiveness of reasoning-level personalization in black-box LLMs.
Abstract:The surge of user-generated online content presents a wealth of insights into customer preferences and market trends. However, the highly diverse, complex, and context-rich nature of such contents poses significant challenges to traditional opinion mining approaches. To address this, we introduce Online Opinion Mining Benchmark (OOMB), a novel dataset and evaluation protocol designed to assess the ability of large language models (LLMs) to mine opinions effectively from diverse and intricate online environments. OOMB provides extensive (entity, feature, opinion) tuple annotations and a comprehensive opinion-centric summary that highlights key opinion topics within each content, thereby enabling the evaluation of both the extractive and abstractive capabilities of models. Through our proposed benchmark, we conduct a comprehensive analysis of which aspects remain challenging and where LLMs exhibit adaptability, to explore whether they can effectively serve as opinion miners in realistic online scenarios. This study lays the foundation for LLM-based opinion mining and discusses directions for future research in this field.
Abstract:Reward models (RMs) play a crucial role in reinforcement learning from human feedback (RLHF), aligning model behavior with human preferences. However, existing benchmarks for reward models show a weak correlation with the performance of optimized policies, suggesting that they fail to accurately assess the true capabilities of RMs. To bridge this gap, we explore several evaluation designs through the lens of reward overoptimization\textemdash a phenomenon that captures both how well the reward model aligns with human preferences and the dynamics of the learning signal it provides to the policy. The results highlight three key findings on how to construct a reliable benchmark: (i) it is important to minimize differences between chosen and rejected responses beyond correctness, (ii) evaluating reward models requires multiple comparisons across a wide range of chosen and rejected responses, and (iii) given that reward models encounter responses with diverse representations, responses should be sourced from a variety of models. However, we also observe that a extremely high correlation with degree of overoptimization leads to comparatively lower correlation with certain downstream performance. Thus, when designing a benchmark, it is desirable to use the degree of overoptimization as a useful tool, rather than the end goal.
Abstract:Existing dense retrieval models struggle with reasoning-intensive retrieval task as they fail to capture implicit relevance that requires reasoning beyond surface-level semantic information. To address these challenges, we propose Scenario-Profiled Indexing with Knowledge Expansion (SPIKE), a dense retrieval framework that explicitly indexes implicit relevance by decomposing documents into scenario-based retrieval units. SPIKE organizes documents into scenario, which encapsulates the reasoning process necessary to uncover implicit relationships between hypothetical information needs and document content. SPIKE constructs a scenario-augmented dataset using a powerful teacher large language model (LLM), then distills these reasoning capabilities into a smaller, efficient scenario generator. During inference, SPIKE incorporates scenario-level relevance alongside document-level relevance, enabling reasoning-aware retrieval. Extensive experiments demonstrate that SPIKE consistently enhances retrieval performance across various query types and dense retrievers. It also enhances the retrieval experience for users through scenario and offers valuable contextual information for LLMs in retrieval-augmented generation (RAG).
Abstract:Recent advancements in table-based reasoning have expanded beyond factoid-level QA to address insight-level tasks, where systems should synthesize implicit knowledge in the table to provide explainable analyses. Although effective, existing studies remain confined to scenarios where a single gold table is given alongside the user query, failing to address cases where users seek comprehensive insights from multiple unknown tables. To bridge these gaps, we propose MT-RAIG Bench, design to evaluate systems on Retrieval-Augmented Insight Generation over Mulitple-Tables. Additionally, to tackle the suboptimality of existing automatic evaluation methods in the table domain, we further introduce a fine-grained evaluation framework MT-RAIG Eval, which achieves better alignment with human quality judgments on the generated insights. We conduct extensive experiments and reveal that even frontier LLMs still struggle with complex multi-table reasoning, establishing our MT-RAIG Bench as a challenging testbed for future research.