Abstract:Large language models (LLMs) have recently achieved impressive performance across a wide range of natural language tasks and are now widely used in real-world applications. Among them, black-box LLMs--served via APIs without access to model internals--are especially dominant due to their scalability and ease of deployment. Despite their strong capabilities, these models typically produce generalized responses that overlook personal preferences and reasoning styles. This has led to growing interest in black-box LLM personalization, which aims to tailor model outputs to user-specific context without modifying model parameters. However, existing approaches primarily focus on response-level personalization, attempting to match final outputs without modeling personal thought process. To address this limitation, we propose RPM, a framework for reasoning-level personalization that aligns the model's reasoning process with a user's personalized logic. RPM first constructs statistical user-specific factors by extracting and grouping response-influential features from user history. It then builds personalized reasoning paths that reflect how these factors are used in context. In the inference stage, RPM retrieves reasoning-aligned examples for new queries via feature-level similarity and performs inference conditioned on the structured factors and retrieved reasoning paths, enabling the model to follow user-specific reasoning trajectories. This reasoning-level personalization enhances both predictive accuracy and interpretability by grounding model outputs in user-specific logic through structured information. Extensive experiments across diverse tasks show that RPM consistently outperforms response-level personalization methods, demonstrating the effectiveness of reasoning-level personalization in black-box LLMs.
Abstract:The surge of user-generated online content presents a wealth of insights into customer preferences and market trends. However, the highly diverse, complex, and context-rich nature of such contents poses significant challenges to traditional opinion mining approaches. To address this, we introduce Online Opinion Mining Benchmark (OOMB), a novel dataset and evaluation protocol designed to assess the ability of large language models (LLMs) to mine opinions effectively from diverse and intricate online environments. OOMB provides extensive (entity, feature, opinion) tuple annotations and a comprehensive opinion-centric summary that highlights key opinion topics within each content, thereby enabling the evaluation of both the extractive and abstractive capabilities of models. Through our proposed benchmark, we conduct a comprehensive analysis of which aspects remain challenging and where LLMs exhibit adaptability, to explore whether they can effectively serve as opinion miners in realistic online scenarios. This study lays the foundation for LLM-based opinion mining and discusses directions for future research in this field.
Abstract:Reward models (RMs) play a crucial role in reinforcement learning from human feedback (RLHF), aligning model behavior with human preferences. However, existing benchmarks for reward models show a weak correlation with the performance of optimized policies, suggesting that they fail to accurately assess the true capabilities of RMs. To bridge this gap, we explore several evaluation designs through the lens of reward overoptimization\textemdash a phenomenon that captures both how well the reward model aligns with human preferences and the dynamics of the learning signal it provides to the policy. The results highlight three key findings on how to construct a reliable benchmark: (i) it is important to minimize differences between chosen and rejected responses beyond correctness, (ii) evaluating reward models requires multiple comparisons across a wide range of chosen and rejected responses, and (iii) given that reward models encounter responses with diverse representations, responses should be sourced from a variety of models. However, we also observe that a extremely high correlation with degree of overoptimization leads to comparatively lower correlation with certain downstream performance. Thus, when designing a benchmark, it is desirable to use the degree of overoptimization as a useful tool, rather than the end goal.
Abstract:Existing dense retrieval models struggle with reasoning-intensive retrieval task as they fail to capture implicit relevance that requires reasoning beyond surface-level semantic information. To address these challenges, we propose Scenario-Profiled Indexing with Knowledge Expansion (SPIKE), a dense retrieval framework that explicitly indexes implicit relevance by decomposing documents into scenario-based retrieval units. SPIKE organizes documents into scenario, which encapsulates the reasoning process necessary to uncover implicit relationships between hypothetical information needs and document content. SPIKE constructs a scenario-augmented dataset using a powerful teacher large language model (LLM), then distills these reasoning capabilities into a smaller, efficient scenario generator. During inference, SPIKE incorporates scenario-level relevance alongside document-level relevance, enabling reasoning-aware retrieval. Extensive experiments demonstrate that SPIKE consistently enhances retrieval performance across various query types and dense retrievers. It also enhances the retrieval experience for users through scenario and offers valuable contextual information for LLMs in retrieval-augmented generation (RAG).
Abstract:Recent advancements in table-based reasoning have expanded beyond factoid-level QA to address insight-level tasks, where systems should synthesize implicit knowledge in the table to provide explainable analyses. Although effective, existing studies remain confined to scenarios where a single gold table is given alongside the user query, failing to address cases where users seek comprehensive insights from multiple unknown tables. To bridge these gaps, we propose MT-RAIG Bench, design to evaluate systems on Retrieval-Augmented Insight Generation over Mulitple-Tables. Additionally, to tackle the suboptimality of existing automatic evaluation methods in the table domain, we further introduce a fine-grained evaluation framework MT-RAIG Eval, which achieves better alignment with human quality judgments on the generated insights. We conduct extensive experiments and reveal that even frontier LLMs still struggle with complex multi-table reasoning, establishing our MT-RAIG Bench as a challenging testbed for future research.
Abstract:Recent approaches in Conversational Recommender Systems (CRSs) have tried to simulate real-world users engaging in conversations with CRSs to create more realistic testing environments that reflect the complexity of human-agent dialogue. Despite the significant advancements, reliably evaluating the capability of CRSs to elicit user preferences still faces a significant challenge. Existing evaluation metrics often rely on target-biased user simulators that assume users have predefined preferences, leading to interactions that devolve into simplistic guessing game. These simulators typically guide the CRS toward specific target items based on fixed attributes, limiting the dynamic exploration of user preferences and struggling to capture the evolving nature of real-user interactions. Additionally, current evaluation metrics are predominantly focused on single-turn recall of target items, neglecting the intermediate processes of preference elicitation. To address this, we introduce PEPPER, a novel CRS evaluation protocol with target-free user simulators constructed from real-user interaction histories and reviews. PEPPER enables realistic user-CRS dialogues without falling into simplistic guessing games, allowing users to gradually discover their preferences through enriched interactions, thereby providing a more accurate and reliable assessment of the CRS's ability to elicit personal preferences. Furthermore, PEPPER presents detailed measures for comprehensively evaluating the preference elicitation capabilities of CRSs, encompassing both quantitative and qualitative measures that capture four distinct aspects of the preference elicitation process. Through extensive experiments, we demonstrate the validity of PEPPER as a simulation environment and conduct a thorough analysis of how effectively existing CRSs perform in preference elicitation and recommendation.
Abstract:Generative retrieval has recently emerged as a new alternative of traditional information retrieval approaches. However, existing generative retrieval methods directly decode docid when a query is given, making it impossible to provide users with explanations as an answer for "Why this document is retrieved?". To address this limitation, we propose Hierarchical Category Path-Enhanced Generative Retrieval(HyPE), which enhances explainability by generating hierarchical category paths step-by-step before decoding docid. HyPE leverages hierarchical category paths as explanation, progressing from broad to specific semantic categories. This approach enables diverse explanations for the same document depending on the query by using shared category paths between the query and the document, and provides reasonable explanation by reflecting the document's semantic structure through a coarse-to-fine manner. HyPE constructs category paths with external high-quality semantic hierarchy, leverages LLM to select appropriate candidate paths for each document, and optimizes the generative retrieval model with path-augmented dataset. During inference, HyPE utilizes path-aware reranking strategy to aggregate diverse topic information, allowing the most relevant documents to be prioritized in the final ranked list of docids. Our extensive experiments demonstrate that HyPE not only offers a high level of explainability but also improves the retrieval performance in the document retrieval task.
Abstract:Academic paper search is an essential task for efficient literature discovery and scientific advancement. While dense retrieval has advanced various ad-hoc searches, it often struggles to match the underlying academic concepts between queries and documents, which is critical for paper search. To enable effective academic concept matching for paper search, we propose Taxonomy-guided Semantic Indexing (TaxoIndex) framework. TaxoIndex extracts key concepts from papers and organizes them as a semantic index guided by an academic taxonomy, and then leverages this index as foundational knowledge to identify academic concepts and link queries and documents. As a plug-and-play framework, TaxoIndex can be flexibly employed to enhance existing dense retrievers. Extensive experiments show that TaxoIndex brings significant improvements, even with highly limited training data, and greatly enhances interpretability.
Abstract:Code-switching (CS), a phenomenon where multilingual speakers alternate between languages in a discourse, can convey subtle cultural and linguistic nuances that can be otherwise lost in translation. Recent state-of-the-art multilingual large language models (LLMs) demonstrate excellent multilingual abilities in various aspects including understanding CS, but the power of CS in eliciting language-specific knowledge is yet to be discovered. Therefore, we investigate the effectiveness of code-switching on a wide range of multilingual LLMs in terms of knowledge activation, or the act of identifying and leveraging knowledge for reasoning. To facilitate the research, we first present EnKoQA, a synthetic English-Korean CS question-answering dataset. We provide a comprehensive analysis on a variety of multilingual LLMs by subdividing activation process into knowledge identification and knowledge leveraging. Our experiments demonstrate that compared to English text, CS can faithfully activate knowledge inside LLMs, especially on language-specific domains. In addition, the performance gap between CS and English is larger in models that show excellent monolingual abilities, suggesting that there exists a correlation with CS and Korean proficiency.
Abstract:Large language models (LLMs) have recently gained much attention in building autonomous agents. However, the performance of current LLM-based web agents in long-horizon tasks is far from optimal, often yielding errors such as repeatedly buying a non-refundable flight ticket. By contrast, humans can avoid such an irreversible mistake, as we have an awareness of the potential outcomes (e.g., losing money) of our actions, also known as the "world model". Motivated by this, our study first starts with preliminary analyses, confirming the absence of world models in current LLMs (e.g., GPT-4o, Claude-3.5-Sonnet, etc.). Then, we present a World-model-augmented (WMA) web agent, which simulates the outcomes of its actions for better decision-making. To overcome the challenges in training LLMs as world models predicting next observations, such as repeated elements across observations and long HTML inputs, we propose a transition-focused observation abstraction, where the prediction objectives are free-form natural language descriptions exclusively highlighting important state differences between time steps. Experiments on WebArena and Mind2Web show that our world models improve agents' policy selection without training and demonstrate our agents' cost- and time-efficiency compared to recent tree-search-based agents.