Abstract:In spoken conversational question answering (SCQA), the answer to the corresponding question is generated by retrieving and then analyzing a fixed spoken document, including multi-part conversations. Most SCQA systems have considered only retrieving information from ordered utterances. However, the sequential order of dialogue is important to build a robust spoken conversational question answering system, and the changes of utterances order may severely result in low-quality and incoherent corpora. To this end, we introduce a self-supervised learning approach, including incoherence discrimination, insertion detection, and question prediction, to explicitly capture the coreference resolution and dialogue coherence among spoken documents. Specifically, we design a joint learning framework where the auxiliary self-supervised tasks can enable the pre-trained SCQA systems towards more coherent and meaningful spoken dialogue learning. We also utilize the proposed self-supervised learning tasks to capture intra-sentence coherence. Experimental results demonstrate that our proposed method provides more coherent, meaningful, and appropriate responses, yielding superior performance gains compared to the original pre-trained language models. Our method achieves state-of-the-art results on the Spoken-CoQA dataset.
Abstract:Arbitrary-shaped text detection is a challenging task since curved texts in the wild are of the complex geometric layouts. Existing mainstream methods follow the instance segmentation pipeline to obtain the text regions. However, arbitraryshaped texts are difficult to be depicted through one single segmentation network because of the varying scales. In this paper, we propose a two-stage segmentation-based detector, termed as NASK (Need A Second looK), for arbitrary-shaped text detection. Compared to the traditional single-stage segmentation network, our NASK conducts the detection in a coarse-to-fine manner with the first stage segmentation spotting the rectangle text proposals and the second one retrieving compact representations. Specifically, NASK is composed of a Text Instance Segmentation (TIS) network (1st stage), a Geometry-aware Text RoI Alignment (GeoAlign) module, and a Fiducial pOint eXpression (FOX) module (2nd stage). Firstly, TIS extracts the augmented features with a novel Group Spatial and Channel Attention (GSCA) module and conducts instance segmentation to obtain rectangle proposals. Then, GeoAlign converts these rectangles into the fixed size and encodes RoI-wise feature representation. Finally, FOX disintegrates the text instance into serval pivotal geometrical attributes to refine the detection results. Extensive experimental results on three public benchmarks including Total-Text, SCUTCTW1500, and ICDAR 2015 verify that our NASK outperforms recent state-of-the-art methods.
Abstract:Recently, image captioning has aroused great interest in both academic and industrial worlds. Most existing systems are built upon large-scale datasets consisting of image-sentence pairs, which, however, are time-consuming to construct. In addition, even for the most advanced image captioning systems, it is still difficult to realize deep image understanding. In this work, we achieve unpaired image captioning by bridging the vision and the language domains with high-level semantic information. The motivation stems from the fact that the semantic concepts with the same modality can be extracted from both images and descriptions. To further improve the quality of captions generated by the model, we propose the Semantic Relationship Explorer, which explores the relationships between semantic concepts for better understanding of the image. Extensive experiments on MSCOCO dataset show that we can generate desirable captions without paired datasets. Furthermore, the proposed approach boosts five strong baselines under the paired setting, where the most significant improvement in CIDEr score reaches 8%, demonstrating that it is effective and generalizes well to a wide range of models.
Abstract:It is well known that the mismatch between training (source) and test (target) data distribution will significantly decrease the performance of acoustic scene classification (ASC) systems. To address this issue, domain adaptation (DA) is one solution and many unsupervised DA methods have been proposed. These methods focus on a scenario of single source domain to single target domain. However, we will face such problem that test data comes from multiple target domains. This problem can be addressed by producing one model per target domain, but this solution is too costly. In this paper, we propose a novel unsupervised multi-target domain adaption (MTDA) method for ASC, which can adapt to multiple target domains simultaneously and make use of the underlying relation among multiple domains. Specifically, our approach combines traditional adversarial adaptation with two novel discriminator tasks that learns a common subspace shared by all domains. Furthermore, we propose to divide the target domain into the easy-to-adapt and hard-to-adapt domain, which enables the system to pay more attention to hard-to-adapt domain in training. The experimental results on the DCASE 2020 Task 1-A dataset and the DCASE 2019 Task 1-B dataset show that our proposed method significantly outperforms the previous unsupervised DA methods.
Abstract:Skip connection, is a widely-used technique to improve the performance and the convergence of deep neural networks, which is believed to relieve the difficulty in optimization due to non-linearity by propagating a linear component through the neural network layers. However, from another point of view, it can also be seen as a modulating mechanism between the input and the output, with the input scaled by a pre-defined value one. In this work, we investigate how the scale factors in the effectiveness of the skip connection and reveal that a trivial adjustment of the scale will lead to spurious gradient exploding or vanishing in line with the deepness of the models, which could be addressed by normalization, in particular, layer normalization, which induces consistent improvements over the plain skip connection. Inspired by the findings, we further propose to adaptively adjust the scale of the input by recursively applying skip connection with layer normalization, which promotes the performance substantially and generalizes well across diverse tasks including both machine translation and image classification datasets.
Abstract:Human-Object Interaction (HOI) detection devotes to learn how humans interact with surrounding objects. Latest end-to-end HOI detectors are short of relation reasoning, which leads to inability to learn HOI-specific interactive semantics for predictions. In this paper, we therefore propose novel relation reasoning for HOI detection. We first present a progressive Relation-aware Frame, which brings a new structure and parameter sharing pattern for interaction inference. Upon the frame, an Interaction Intensifier Module and a Correlation Parsing Module are carefully designed, where: a) interactive semantics from humans can be exploited and passed to objects to intensify interactions, b) interactive correlations among humans, objects and interactions are integrated to promote predictions. Based on modules above, we construct an end-to-end trainable framework named Relation Reasoning Network (abbr. RR-Net). Extensive experiments show that our proposed RR-Net sets a new state-of-the-art on both V-COCO and HICO-DET benchmarks and improves the baseline about 5.5% and 9.8% relatively, validating that this first effort in exploring relation reasoning and integrating interactive semantics has brought obvious improvement for end-to-end HOI detection.
Abstract:To date, mainstream target speech separation (TSS) approaches are formulated to estimate the complex ratio mask (cRM) of the target speech in time-frequency domain under supervised deep learning framework. However, the existing deep models for estimating cRM are designed in the way that the real and imaginary parts of the cRM are separately modeled using real-valued training data pairs. The research motivation of this study is to design a deep model that fully exploits the temporal-spectral-spatial information of multi-channel signals for estimating cRM directly and efficiently in complex domain. As a result, a novel TSS network is designed consisting of two modules, a complex neural spatial filter (cNSF) and an MVDR. Essentially, cNSF is a cRM estimation model and an MVDR module is cascaded to the cNSF module to reduce the nonlinear speech distortions introduced by neural network. Specifically, to fit the cRM target, all input features of cNSF are reformulated into complex-valued representations following the supervised learning paradigm. Then, to achieve good hierarchical feature abstraction, a complex deep neural network (cDNN) is delicately designed with U-Net structure. Experiments conducted on simulated multi-channel speech data demonstrate the proposed cNSF outperforms the baseline NSF by 12.1% scale-invariant signal-to-distortion ratio and 33.1% word error rate.
Abstract:Transformer-based self-supervised models are trained as feature extractors and have empowered many downstream speech tasks to achieve state-of-the-art performance. However, both the training and inference process of these models may encounter prohibitively high computational cost and large parameter budget. Although Parameter Sharing Strategy (PSS) proposed in ALBERT paves the way for parameter reduction, the computation required remains the same. Interestingly, we found in experiments that distributions of feature embeddings from different Transformer layers are similar when PSS is integrated: a property termed as Layer Consistency (LC) in this paper. Given this similarity of feature distributions, we assume that feature embeddings from different layers would have similar representing power. In this work, Layer Consistency enables us to adopt Transformer-based models in a more efficient manner: the number of Conformer layers in each training iteration could be uniformly sampled and Shallow Layer Inference (SLI) could be applied to reduce the number of layers in inference stage. In experiments, our models are trained with LibriSpeech dataset and then evaluated on both phone classification and Speech Recognition tasks. We experimentally achieve 7.8X parameter reduction, 41.9% training speedup and 37.7% inference speedup while maintaining comparable performance with conventional BERT-like self-supervised methods.
Abstract:In this paper, we present SpecAugment++, a novel data augmentation method for deep neural networks based acoustic scene classification (ASC). Different from other popular data augmentation methods such as SpecAugment and mixup that only work on the input space, SpecAugment++ is applied to both the input space and the hidden space of the deep neural networks to enhance the input and the intermediate feature representations. For an intermediate hidden state, the augmentation techniques consist of masking blocks of frequency channels and masking blocks of time frames, which improve generalization by enabling a model to attend not only to the most discriminative parts of the feature, but also the entire parts. Apart from using zeros for masking, we also examine two approaches for masking based on the use of other samples within the minibatch, which helps introduce noises to the networks to make them more discriminative for classification. The experimental results on the DCASE 2018 Task1 dataset and DCASE 2019 Task1 dataset show that our proposed method can obtain 3.6% and 4.7% accuracy gains over a strong baseline without augmentation (i.e. CP-ResNet) respectively, and outperforms other previous data augmentation methods.
Abstract:Weakly-supervised temporal action localization (WS-TAL) aims to localize actions in untrimmed videos with only video-level labels. Most existing models follow the "localization by classification" procedure: locate temporal regions contributing most to the video-level classification. Generally, they process each snippet (or frame) individually and thus overlook the fruitful temporal context relation. Here arises the single snippet cheating issue: "hard" snippets are too vague to be classified. In this paper, we argue that learning by comparing helps identify these hard snippets and we propose to utilize snippet Contrastive learning to Localize Actions, CoLA for short. Specifically, we propose a Snippet Contrast (SniCo) Loss to refine the hard snippet representation in feature space, which guides the network to perceive precise temporal boundaries and avoid the temporal interval interruption. Besides, since it is infeasible to access frame-level annotations, we introduce a Hard Snippet Mining algorithm to locate the potential hard snippets. Substantial analyses verify that this mining strategy efficaciously captures the hard snippets and SniCo Loss leads to more informative feature representation. Extensive experiments show that CoLA achieves state-of-the-art results on THUMOS'14 and ActivityNet v1.2 datasets.