Abstract:The performance of large language models (LLMs) is acutely sensitive to the phrasing of prompts, which raises significant concerns about their reliability in real-world scenarios. Existing studies often divide prompts into task-level instructions and case-level inputs and primarily focus on evaluating and improving robustness against variations in tasks-level instructions. However, this setup fails to fully address the diversity of real-world user queries and assumes the existence of task-specific datasets. To address these limitations, we introduce RobustAlpacaEval, a new benchmark that consists of semantically equivalent case-level queries and emphasizes the importance of using the worst prompt performance to gauge the lower bound of model performance. Extensive experiments on RobustAlpacaEval with ChatGPT and six open-source LLMs from the Llama, Mistral, and Gemma families uncover substantial variability in model performance; for instance, a difference of 45.48% between the worst and best performance for the Llama-2-70B-chat model, with its worst performance dipping as low as 9.38%. We further illustrate the difficulty in identifying the worst prompt from both model-agnostic and model-dependent perspectives, emphasizing the absence of a shortcut to characterize the worst prompt. We also attempt to enhance the worst prompt performance using existing prompt engineering and prompt consistency methods, but find that their impact is limited. These findings underscore the need to create more resilient LLMs that can maintain high performance across diverse prompts.
Abstract:Spoken language understanding (SLU) is a core task in task-oriented dialogue systems, which aims at understanding the user's current goal through constructing semantic frames. SLU usually consists of two subtasks, including intent detection and slot filling. Although there are some SLU frameworks joint modeling the two subtasks and achieving high performance, most of them still overlook the inherent relationships between intents and slots and fail to achieve mutual guidance between the two subtasks. To solve the problem, we propose a multi-level multi-grained SLU framework MMCL to apply contrastive learning at three levels, including utterance level, slot level, and word level to enable intent and slot to mutually guide each other. For the utterance level, our framework implements coarse granularity contrastive learning and fine granularity contrastive learning simultaneously. Besides, we also apply the self-distillation method to improve the robustness of the model. Experimental results and further analysis demonstrate that our proposed model achieves new state-of-the-art results on two public multi-intent SLU datasets, obtaining a 2.6 overall accuracy improvement on the MixATIS dataset compared to previous best models.
Abstract:The evolution of text to visual components facilitates people's daily lives, such as generating image, videos from text and identifying the desired elements within the images. Computer vision models involving the multimodal abilities in the previous days are focused on image detection, classification based on well-defined objects. Large language models (LLMs) introduces the transformation from nature language to visual objects, which present the visual layout for text contexts. OpenAI GPT-4 has emerged as the pinnacle in LLMs, while the computer vision (CV) domain boasts a plethora of state-of-the-art (SOTA) models and algorithms to convert 2D images to their 3D representations. However, the mismatching between the algorithms with the problem could lead to undesired results. In response to this challenge, we propose an unified VisionGPT-3D framework to consolidate the state-of-the-art vision models, thereby facilitating the development of vision-oriented AI. VisionGPT-3D provides a versatile multimodal framework building upon the strengths of multimodal foundation models. It seamlessly integrates various SOTA vision models and brings the automation in the selection of SOTA vision models, identifies the suitable 3D mesh creation algorithms corresponding to 2D depth maps analysis, generates optimal results based on diverse multimodal inputs such as text prompts. Keywords: VisionGPT-3D, 3D vision understanding, Multimodal agent
Abstract:With the emergence of large language models (LLMs) and vision foundation models, how to combine the intelligence and capacity of these open-sourced or API-available models to achieve open-world visual perception remains an open question. In this paper, we introduce VisionGPT to consolidate and automate the integration of state-of-the-art foundation models, thereby facilitating vision-language understanding and the development of vision-oriented AI. VisionGPT builds upon a generalized multimodal framework that distinguishes itself through three key features: (1) utilizing LLMs (e.g., LLaMA-2) as the pivot to break down users' requests into detailed action proposals to call suitable foundation models; (2) integrating multi-source outputs from foundation models automatically and generating comprehensive responses for users; (3) adaptable to a wide range of applications such as text-conditioned image understanding/generation/editing and visual question answering. This paper outlines the architecture and capabilities of VisionGPT, demonstrating its potential to revolutionize the field of computer vision through enhanced efficiency, versatility, and generalization, and performance. Our code and models will be made publicly available. Keywords: VisionGPT, Open-world visual perception, Vision-language understanding, Large language model, and Foundation model
Abstract:Several text-to-video diffusion models have demonstrated commendable capabilities in synthesizing high-quality video content. However, it remains a formidable challenge pertaining to maintaining temporal consistency and ensuring action smoothness throughout the generated sequences. In this paper, we present an innovative video generation AI agent that harnesses the power of Sora-inspired multimodal learning to build skilled world models framework based on textual prompts and accompanying images. The framework includes two parts: prompt enhancer and full video translation. The first part employs the capabilities of ChatGPT to meticulously distill and proactively construct precise prompts for each subsequent step, thereby guaranteeing the utmost accuracy in prompt communication and accurate execution in following model operations. The second part employ compatible with existing advanced diffusion techniques to expansively generate and refine the key frame at the conclusion of a video. Then we can expertly harness the power of leading and trailing key frames to craft videos with enhanced temporal consistency and action smoothness. The experimental results confirm that our method has strong effectiveness and novelty in constructing world models from text and image inputs over the other methods.
Abstract:Most models for weakly supervised video anomaly detection (WS-VAD) rely on multiple instance learning, aiming to distinguish normal and abnormal snippets without specifying the type of anomaly. The ambiguous nature of anomaly definitions across contexts introduces bias in detecting abnormal and normal snippets within the abnormal bag. Taking the first step to show the model why it is anomalous, a novel framework is proposed to guide the learning of suspected anomalies from event prompts. Given a textual prompt dictionary of potential anomaly events and the captions generated from anomaly videos, the semantic anomaly similarity between them could be calculated to identify the suspected anomalous events for each video snippet. It enables a new multi-prompt learning process to constrain the visual-semantic features across all videos, as well as provides a new way to label pseudo anomalies for self-training. To demonstrate effectiveness, comprehensive experiments and detailed ablation studies are conducted on four datasets, namely XD-Violence, UCF-Crime, TAD, and ShanghaiTech. Our proposed model outperforms most state-of-the-art methods in terms of AP or AUC (82.6\%, 87.7\%, 93.1\%, and 97.4\%). Furthermore, it shows promising performance in open-set and cross-dataset cases.
Abstract:Standard language models generate text by selecting tokens from a fixed, finite, and standalone vocabulary. We introduce a novel method that selects context-aware phrases from a collection of supporting documents. One of the most significant challenges for this paradigm shift is determining the training oracles, because a string of text can be segmented in various ways and each segment can be retrieved from numerous possible documents. To address this, we propose to initialize the training oracles using linguistic heuristics and, more importantly, bootstrap the oracles through iterative self-reinforcement. Extensive experiments show that our model not only outperforms standard language models on a variety of knowledge-intensive tasks but also demonstrates improved generation quality in open-ended text generation. For instance, compared to the standard language model counterpart, our model raises the accuracy from 23.47% to 36.27% on OpenbookQA, and improves the MAUVE score from 42.61% to 81.58% in open-ended text generation. Remarkably, our model also achieves the best performance and the lowest latency among several retrieval-augmented baselines. In conclusion, we assert that retrieval is more accurate generation and hope that our work will encourage further research on this new paradigm shift.
Abstract:While vision-language pre-trained models (VL-PTMs) have advanced multimodal research in recent years, their mastery in a few languages like English restricts their applicability in broader communities. To this end, there is an increasing interest in developing multilingual VL models via a joint-learning setup, which, however, could be unrealistic due to expensive costs and data availability. In this work, we propose to extend VL-PTMs' language capacity by continual language learning (CLL), where a model needs to update its linguistic knowledge incrementally without suffering from catastrophic forgetting (CF). We begin our study by introducing a model dubbed CLL-CLIP, which builds upon CLIP, a prevailing VL-PTM that has acquired image-English text alignment. Specifically, CLL-CLIP contains an expandable token embedding layer to handle linguistic differences. It solely trains token embeddings to improve memory stability and is optimized under cross-modal and cross-lingual objectives to learn the alignment between images and multilingual texts. To alleviate CF raised by covariate shift and lexical overlap, we further propose a novel approach that ensures the identical distribution of all token embeddings during initialization and regularizes token embedding learning during training. We construct a CLL benchmark covering 36 languages based on MSCOCO and XM3600 datasets and then evaluate multilingual image-text retrieval performance. Extensive experiments verify the effectiveness of CLL-CLIP and show that our approach can boost CLL-CLIP, e.g., by 6.7% in text-to-image average Recall@1 on XM3600, and improve various state-of-the-art methods consistently. Our code and data are available at \url{https://github.com/yangbang18/CLFM}.
Abstract:Spoken language understanding (SLU) is a fundamental task in the task-oriented dialogue systems. However, the inevitable errors from automatic speech recognition (ASR) usually impair the understanding performance and lead to error propagation. Although there are some attempts to address this problem through contrastive learning, they (1) treat clean manual transcripts and ASR transcripts equally without discrimination in fine-tuning; (2) neglect the fact that the semantically similar pairs are still pushed away when applying contrastive learning; (3) suffer from the problem of Kullback-Leibler (KL) vanishing. In this paper, we propose Mutual Learning and Large-Margin Contrastive Learning (ML-LMCL), a novel framework for improving ASR robustness in SLU. Specifically, in fine-tuning, we apply mutual learning and train two SLU models on the manual transcripts and the ASR transcripts, respectively, aiming to iteratively share knowledge between these two models. We also introduce a distance polarization regularizer to avoid pushing away the intra-cluster pairs as much as possible. Moreover, we use a cyclical annealing schedule to mitigate KL vanishing issue. Experiments on three datasets show that ML-LMCL outperforms existing models and achieves new state-of-the-art performance.
Abstract:In the current landscape of artificial intelligence, foundation models serve as the bedrock for advancements in both language and vision domains. OpenAI GPT-4 has emerged as the pinnacle in large language models (LLMs), while the computer vision (CV) domain boasts a plethora of state-of-the-art (SOTA) models such as Meta's SAM and DINO, and YOLOS. However, the financial and computational burdens of training new models from scratch remain a significant barrier to progress. In response to this challenge, we introduce UnifiedVisionGPT, a novel framework designed to consolidate and automate the integration of SOTA vision models, thereby facilitating the development of vision-oriented AI. UnifiedVisionGPT distinguishes itself through four key features: (1) provides a versatile multimodal framework adaptable to a wide range of applications, building upon the strengths of multimodal foundation models; (2) seamlessly integrates various SOTA vision models to create a comprehensive multimodal platform, capitalizing on the best components of each model; (3) prioritizes vision-oriented AI, ensuring a more rapid progression in the CV domain compared to the current trajectory of LLMs; and (4) introduces automation in the selection of SOTA vision models, generating optimal results based on diverse multimodal inputs such as text prompts and images. This paper outlines the architecture and capabilities of UnifiedVisionGPT, demonstrating its potential to revolutionize the field of computer vision through enhanced efficiency, versatility, generalization, and performance. Our implementation, along with the unified multimodal framework and comprehensive dataset, is made publicly available at https://github.com/LHBuilder/SA-Segment-Anything.