Abstract:We propose AUV, a unified neural audio codec with a single codebook, which enables a favourable reconstruction of speech and further extends to general audio, including vocal, music, and sound. AUV is capable of tackling any 16 kHz mixed-domain audio segment at bit rates around 700 bps. To accomplish this, we guide the matryoshka codebook with nested domain-specific partitions, assigned with corresponding teacher models to perform distillation, all in a single-stage training. A conformer-style encoder-decoder architecture with STFT features as audio representation is employed, yielding better audio quality. Comprehensive evaluations demonstrate that AUV exhibits comparable audio reconstruction ability to state-of-the-art domain-specific single-layer quantizer codecs, showcasing the potential of audio universal vector quantization with a single codebook. The pre-trained model and demo samples are available at https://swivid.github.io/AUV/.
Abstract:Existing audio-text retrieval (ATR) methods are essentially discriminative models that aim to maximize the conditional likelihood, represented as p(candidates|query). Nevertheless, this methodology fails to consider the intrinsic data distribution p(query), leading to difficulties in discerning out-of-distribution data. In this work, we attempt to tackle this constraint through a generative perspective and model the relationship between audio and text as their joint probability p(candidates,query). To this end, we present a diffusion-based ATR framework (DiffATR), which models ATR as an iterative procedure that progressively generates joint distribution from noise. Throughout its training phase, DiffATR is optimized from both generative and discriminative viewpoints: the generator is refined through a generation loss, while the feature extractor benefits from a contrastive loss, thus combining the merits of both methodologies. Experiments on the AudioCaps and Clotho datasets with superior performances, verify the effectiveness of our approach. Notably, without any alterations, our DiffATR consistently exhibits strong performance in out-of-domain retrieval settings.
Abstract:Most existing audio-text retrieval (ATR) approaches typically rely on a single-level interaction to associate audio and text, limiting their ability to align different modalities and leading to suboptimal matches. In this work, we present a novel ATR framework that leverages two-stream Transformers in conjunction with a Hierarchical Alignment (THA) module to identify multi-level correspondences of different Transformer blocks between audio and text. Moreover, current ATR methods mainly focus on learning a global-level representation, missing out on intricate details to capture audio occurrences that correspond to textual semantics. To bridge this gap, we introduce a Disentangled Cross-modal Representation (DCR) approach that disentangles high-dimensional features into compact latent factors to grasp fine-grained audio-text semantic correlations. Additionally, we develop a confidence-aware (CA) module to estimate the confidence of each latent factor pair and adaptively aggregate cross-modal latent factors to achieve local semantic alignment. Experiments show that our THA effectively boosts ATR performance, with the DCR approach further contributing to consistent performance gains.