Abstract:Large Language Models (LLMs) have significantly impacted numerous domains, including Software Engineering (SE). Many recent publications have explored LLMs applied to various SE tasks. Nevertheless, a comprehensive understanding of the application, effects, and possible limitations of LLMs on SE is still in its early stages. To bridge this gap, we conducted a systematic literature review on LLM4SE, with a particular focus on understanding how LLMs can be exploited to optimize processes and outcomes. We collect and analyze 229 research papers from 2017 to 2023 to answer four key research questions (RQs). In RQ1, we categorize different LLMs that have been employed in SE tasks, characterizing their distinctive features and uses. In RQ2, we analyze the methods used in data collection, preprocessing, and application highlighting the role of well-curated datasets for successful LLM for SE implementation. RQ3 investigates the strategies employed to optimize and evaluate the performance of LLMs in SE. Finally, RQ4 examines the specific SE tasks where LLMs have shown success to date, illustrating their practical contributions to the field. From the answers to these RQs, we discuss the current state-of-the-art and trends, identifying gaps in existing research, and flagging promising areas for future study.
Abstract:Contrastive graph node clustering via learnable data augmentation is a hot research spot in the field of unsupervised graph learning. The existing methods learn the sampling distribution of a pre-defined augmentation to generate data-driven augmentations automatically. Although promising clustering performance has been achieved, we observe that these strategies still rely on pre-defined augmentations, the semantics of the augmented graph can easily drift. The reliability of the augmented view semantics for contrastive learning can not be guaranteed, thus limiting the model performance. To address these problems, we propose a novel CONtrastiVe Graph ClustEring network with Reliable AugmenTation (COVERT). Specifically, in our method, the data augmentations are processed by the proposed reversible perturb-recover network. It distills reliable semantic information by recovering the perturbed latent embeddings. Moreover, to further guarantee the reliability of semantics, a novel semantic loss is presented to constrain the network via quantifying the perturbation and recovery. Lastly, a label-matching mechanism is designed to guide the model by clustering information through aligning the semantic labels and the selected high-confidence clustering pseudo labels. Extensive experimental results on seven datasets demonstrate the effectiveness of the proposed method. We release the code and appendix of CONVERT at https://github.com/xihongyang1999/CONVERT on GitHub.
Abstract:Benefiting from the strong view-consistent information mining capacity, multi-view contrastive clustering has attracted plenty of attention in recent years. However, we observe the following drawback, which limits the clustering performance from further improvement. The existing multi-view models mainly focus on the consistency of the same samples in different views while ignoring the circumstance of similar but different samples in cross-view scenarios. To solve this problem, we propose a novel Dual contrastive calibration network for Multi-View Clustering (DealMVC). Specifically, we first design a fusion mechanism to obtain a global cross-view feature. Then, a global contrastive calibration loss is proposed by aligning the view feature similarity graph and the high-confidence pseudo-label graph. Moreover, to utilize the diversity of multi-view information, we propose a local contrastive calibration loss to constrain the consistency of pair-wise view features. The feature structure is regularized by reliable class information, thus guaranteeing similar samples have similar features in different views. During the training procedure, the interacted cross-view feature is jointly optimized at both local and global levels. In comparison with other state-of-the-art approaches, the comprehensive experimental results obtained from eight benchmark datasets provide substantial validation of the effectiveness and superiority of our algorithm. We release the code of DealMVC at https://github.com/xihongyang1999/DealMVC on GitHub.
Abstract:Foundation models including large language models (LLMs) are increasingly attracting interest worldwide for their distinguished capabilities and potential to perform a wide variety of tasks. Nevertheless, people are concerned about whether foundation model based AI systems are properly governed to ensure trustworthiness of foundation model based AI systems and to prevent misuse that could harm humans, society and the environment. In this paper, we identify eight governance challenges of foundation model based AI systems regarding the three fundamental dimensions of governance: decision rights, incentives, and accountability. Furthermore, we explore the potential of blockchain as a solution to address the challenges by providing a distributed ledger to facilitate decentralised governance. We present an architecture that demonstrates how blockchain can be leveraged to realise governance in foundation model based AI systems.
Abstract:Since the recent prosperity of Large Language Models (LLMs), there have been interleaved discussions regarding how to reduce hallucinations from LLM responses, how to increase the factuality of LLMs, and whether Knowledge Graphs (KGs), which store the world knowledge in a symbolic form, will be replaced with LLMs. In this paper, we try to answer these questions from a new angle: How knowledgeable are LLMs? To answer this question, we constructed Head-to-Tail, a benchmark that consists of 18K question-answer (QA) pairs regarding head, torso, and tail facts in terms of popularity. We designed an automated evaluation method and a set of metrics that closely approximate the knowledge an LLM confidently internalizes. Through a comprehensive evaluation of 14 publicly available LLMs, we show that existing LLMs are still far from being perfect in terms of their grasp of factual knowledge, especially for facts of torso-to-tail entities.
Abstract:Effective feature fusion of multispectral images plays a crucial role in multi-spectral object detection. Previous studies have demonstrated the effectiveness of feature fusion using convolutional neural networks, but these methods are sensitive to image misalignment due to the inherent deffciency in local-range feature interaction resulting in the performance degradation. To address this issue, a novel feature fusion framework of dual cross-attention transformers is proposed to model global feature interaction and capture complementary information across modalities simultaneously. This framework enhances the discriminability of object features through the query-guided cross-attention mechanism, leading to improved performance. However, stacking multiple transformer blocks for feature enhancement incurs a large number of parameters and high spatial complexity. To handle this, inspired by the human process of reviewing knowledge, an iterative interaction mechanism is proposed to share parameters among block-wise multimodal transformers, reducing model complexity and computation cost. The proposed method is general and effective to be integrated into different detection frameworks and used with different backbones. Experimental results on KAIST, FLIR, and VEDAI datasets show that the proposed method achieves superior performance and faster inference, making it suitable for various practical scenarios. Code will be available at https://github.com/chanchanchan97/ICAFusion.
Abstract:Deep graph clustering, which aims to group nodes into disjoint clusters by neural networks in an unsupervised manner, has attracted great attention in recent years. Although the performance has been largely improved, the excellent performance of the existing methods heavily relies on an accurately predefined cluster number, which is not always available in the real-world scenario. To enable the deep graph clustering algorithms to work without the guidance of the predefined cluster number, we propose a new deep graph clustering method termed Reinforcement Graph Clustering (RGC). In our proposed method, cluster number determination and unsupervised representation learning are unified into a uniform framework by the reinforcement learning mechanism. Concretely, the discriminative node representations are first learned with the contrastive pretext task. Then, to capture the clustering state accurately with both local and global information in the graph, both node and cluster states are considered. Subsequently, at each state, the qualities of different cluster numbers are evaluated by the quality network, and the greedy action is executed to determine the cluster number. In order to conduct feedback actions, the clustering-oriented reward function is proposed to enhance the cohesion of the same clusters and separate the different clusters. Extensive experiments demonstrate the effectiveness and efficiency of our proposed method. The source code of RGC is shared at https://github.com/yueliu1999/RGC and a collection (papers, codes and, datasets) of deep graph clustering is shared at https://github.com/yueliu1999/Awesome-Deep-Graph-Clustering on Github.
Abstract:Multimodal knowledge graphs (MKGs), which intuitively organize information in various modalities, can benefit multiple practical downstream tasks, such as recommendation systems, and visual question answering. However, most MKGs are still far from complete, which motivates the flourishing of MKG reasoning models. Recently, with the development of general artificial architectures, the pretrained transformer models have drawn increasing attention, especially for multimodal scenarios. However, the research of multimodal pretrained transformer (MPT) for knowledge graph reasoning (KGR) is still at an early stage. As the biggest difference between MKG and other multimodal data, the rich structural information underlying the MKG still cannot be fully leveraged in existing MPT models. Most of them only utilize the graph structure as a retrieval map for matching images and texts connected with the same entity. This manner hinders their reasoning performances. To this end, we propose the graph Structure Guided Multimodal Pretrained Transformer for knowledge graph reasoning, termed SGMPT. Specifically, the graph structure encoder is adopted for structural feature encoding. Then, a structure-guided fusion module with two different strategies, i.e., weighted summation and alignment constraint, is first designed to inject the structural information into both the textual and visual features. To the best of our knowledge, SGMPT is the first MPT model for multimodal KGR, which mines the structural information underlying the knowledge graph. Extensive experiments on FB15k-237-IMG and WN18-IMG, demonstrate that our SGMPT outperforms existing state-of-the-art models, and prove the effectiveness of the designed strategies.
Abstract:Temporal graph clustering (TGC) is a crucial task in temporal graph learning. Its focus is on node clustering on temporal graphs, and it offers greater flexibility for large-scale graph structures due to the mechanism of temporal graph methods. However, the development of TGC is currently constrained by a significant problem: the lack of suitable and reliable large-scale temporal graph datasets to evaluate clustering performance. In other words, most existing temporal graph datasets are in small sizes, and even large-scale datasets contain only a limited number of available node labels. It makes evaluating models for large-scale temporal graph clustering challenging. To address this challenge, we build arXiv4TGC, a set of novel academic datasets (including arXivAI, arXivCS, arXivMath, arXivPhy, and arXivLarge) for large-scale temporal graph clustering. In particular, the largest dataset, arXivLarge, contains 1.3 million labeled available nodes and 10 million temporal edges. We further compare the clustering performance with typical temporal graph learning models on both previous classic temporal graph datasets and the new datasets proposed in this paper. The clustering performance on arXiv4TGC can be more apparent for evaluating different models, resulting in higher clustering confidence and more suitable for large-scale temporal graph clustering. The arXiv4TGC datasets are publicly available at: https://github.com/MGitHubL/arXiv4TGC.
Abstract:Deep graph clustering, which aims to group the nodes of a graph into disjoint clusters with deep neural networks, has achieved promising progress in recent years. However, the existing methods fail to scale to the large graph with million nodes. To solve this problem, a scalable deep graph clustering method (Dink-Net) is proposed with the idea of dilation and shrink. Firstly, by discriminating nodes, whether being corrupted by augmentations, representations are learned in a self-supervised manner. Meanwhile, the cluster centres are initialized as learnable neural parameters. Subsequently, the clustering distribution is optimized by minimizing the proposed cluster dilation loss and cluster shrink loss in an adversarial manner. By these settings, we unify the two-step clustering, i.e., representation learning and clustering optimization, into an end-to-end framework, guiding the network to learn clustering-friendly features. Besides, Dink-Net scales well to large graphs since the designed loss functions adopt the mini-batch data to optimize the clustering distribution even without performance drops. Both experimental results and theoretical analyses demonstrate the superiority of our method. Compared to the runner-up, Dink-Net achieves 9.62% NMI improvement on the ogbn-papers100M dataset with 111 million nodes and 1.6 billion edges. The source code is released at https://github.com/yueliu1999/Dink-Net. Besides, a collection (papers, codes, and datasets) of deep graph clustering is shared at https://github.com/yueliu1999/Awesome-Deep-Graph-Clustering.