Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Wei Deng, Weijian Luo, Yixin Tan, Marin Biloš, Yu Chen, Yuriy Nevmyvaka, Ricky T. Q. Chen

Schr\"odinger bridge (SB) has emerged as the go-to method for optimizing transportation plans in diffusion models. However, SB requires estimating the intractable forward score functions, inevitably resulting in the costly implicit training loss based on simulated trajectories. To improve the scalability while preserving efficient transportation plans, we leverage variational inference to linearize the forward score functions (variational scores) of SB and restore simulation-free properties in training backward scores. We propose the variational Schr\"odinger diffusion model (VSDM), where the forward process is a multivariate diffusion and the variational scores are adaptively optimized for efficient transport. Theoretically, we use stochastic approximation to prove the convergence of the variational scores and show the convergence of the adaptively generated samples based on the optimal variational scores. Empirically, we test the algorithm in simulated examples and observe that VSDM is efficient in generations of anisotropic shapes and yields straighter sample trajectories compared to the single-variate diffusion. We also verify the scalability of the algorithm in real-world data and achieve competitive unconditional generation performance in CIFAR10 and conditional generation in time series modeling. Notably, VSDM no longer depends on warm-up initializations and has become tuning-friendly in training large-scale experiments.

Via

Xiuyuan Cheng, Jianfeng Lu, Yixin Tan, Yao Xie

Flow-based generative models enjoy certain advantages in computing the data generation and the likelihood, and have recently shown competitive empirical performance. Compared to the accumulating theoretical studies on related score-based diffusion models, analysis of flow-based models, which are deterministic in both forward (data-to-noise) and reverse (noise-to-data) directions, remain sparse. In this paper, we provide a theoretical guarantee of generating data distribution by a progressive flow model, the so-called JKO flow model, which implements the Jordan-Kinderleherer-Otto (JKO) scheme in a normalizing flow network. Leveraging the exponential convergence of the proximal gradient descent (GD) in Wasserstein space, we prove the Kullback-Leibler (KL) guarantee of data generation by a JKO flow model to be $O(\varepsilon^2)$ when using $N \lesssim \log (1/\varepsilon)$ many JKO steps ($N$ Residual Blocks in the flow) where $\varepsilon $ is the error in the per-step first-order condition. The assumption on data density is merely a finite second moment, and the theory extends to data distributions without density and when there are inversion errors in the reverse process where we obtain KL-$W_2$ mixed error guarantees. The non-asymptotic convergence rate of the JKO-type $W_2$-proximal GD is proved for a general class of convex objective functionals that includes the KL divergence as a special case, which can be of independent interest.

Via

Holden Lee, Jianfeng Lu, Yixin Tan

Score-based generative modeling (SGM) has grown to be a hugely successful method for learning to generate samples from complex data distributions such as that of images and audio. It is based on evolving an SDE that transforms white noise into a sample from the learned distribution, using estimates of the score function, or gradient log-pdf. Previous convergence analyses for these methods have suffered either from strong assumptions on the data distribution or exponential dependencies, and hence fail to give efficient guarantees for the multimodal and non-smooth distributions that arise in practice and for which good empirical performance is observed. We consider a popular kind of SGM -- denoising diffusion models -- and give polynomial convergence guarantees for general data distributions, with no assumptions related to functional inequalities or smoothness. Assuming $L^2$-accurate score estimates, we obtain Wasserstein distance guarantees for any distribution of bounded support or sufficiently decaying tails, as well as TV guarantees for distributions with further smoothness assumptions.

Via

Holden Lee, Jianfeng Lu, Yixin Tan

Score-based generative modeling (SGM) is a highly successful approach for learning a probability distribution from data and generating further samples. We prove the first polynomial convergence guarantees for the core mechanic behind SGM: drawing samples from a probability density $p$ given a score estimate (an estimate of $\nabla \ln p$) that is accurate in $L^2(p)$. Compared to previous works, we do not incur error that grows exponentially in time or that suffers from a curse of dimensionality. Our guarantee works for any smooth distribution and depends polynomially on its log-Sobolev constant. Using our guarantee, we give a theoretical analysis of score-based generative modeling, which transforms white-noise input into samples from a learned data distribution given score estimates at different noise scales. Our analysis gives theoretical grounding to the observation that an annealed procedure is required in practice to generate good samples, as our proof depends essentially on using annealing to obtain a warm start at each step. Moreover, we show that a predictor-corrector algorithm gives better convergence than using either portion alone.

Via

Yixin Tan, Xiaomeng Wang, Tao Jia

The hyponym-hypernym relation is an essential element in the semantic network. Identifying the hypernym from a definition is an important task in natural language processing and semantic analysis. While a public dictionary such as WordNet works for common words, its application in domain-specific scenarios is limited. Existing tools for hypernym extraction either rely on specific semantic patterns or focus on the word representation, which all demonstrate certain limitations.

Via