Abstract:Large pretrained generative models like GPT-3 often suffer from hallucinating non-existent or incorrect content, which undermines their potential merits in real applications. Existing work usually attempts to detect these hallucinations based on a corresponding oracle reference at a sentence or document level. However ground-truth references may not be readily available for many free-form text generation applications, and sentence- or document-level detection may fail to provide the fine-grained signals that would prevent fallacious content in real time. As a first step to addressing these issues, we propose a novel token-level, reference-free hallucination detection task and an associated annotated dataset named HaDes (HAllucination DEtection dataSet). To create this dataset, we first perturb a large number of text segments extracted from English language Wikipedia, and then verify these with crowd-sourced annotations. To mitigate label imbalance during annotation, we utilize an iterative model-in-loop strategy. We conduct comprehensive data analyses and create multiple baseline models.
Abstract:Transformers have outperformed recurrent neural networks (RNNs) in natural language generation. This comes with a significant computational overhead, as the attention mechanism scales with a quadratic complexity in sequence length. Efficient transformer variants have received increasing interest from recent works. Among them, a linear-complexity recurrent variant has proven well suited for autoregressive generation. It approximates the softmax attention with randomized or heuristic feature maps, but can be difficult to train or yield suboptimal accuracy. This work aims to convert a pretrained transformer into its efficient recurrent counterpart, improving the efficiency while retaining the accuracy. Specifically, we propose a swap-then-finetune procedure: in an off-the-shelf pretrained transformer, we replace the softmax attention with its linear-complexity recurrent alternative and then finetune. With a learned feature map, our approach provides an improved tradeoff between efficiency and accuracy over the standard transformer and other recurrent variants. We also show that the finetuning process needs lower training cost than training these recurrent variants from scratch. As many recent models for natural language tasks are increasingly dependent on large-scale pretrained transformers, this work presents a viable approach to improving inference efficiency without repeating the expensive pretraining process.
Abstract:In this work, we aim at equipping pre-trained language models with structured knowledge. We present two self-supervised tasks learning over raw text with the guidance from knowledge graphs. Building upon entity-level masked language models, our first contribution is an entity masking scheme that exploits relational knowledge underlying the text. This is fulfilled by using a linked knowledge graph to select informative entities and then masking their mentions. In addition we use knowledge graphs to obtain distractors for the masked entities, and propose a novel distractor-suppressed ranking objective which is optimized jointly with masked language model. In contrast to existing paradigms, our approach uses knowledge graphs implicitly, only during pre-training, to inject language models with structured knowledge via learning from raw text. It is more efficient than retrieval-based methods that perform entity linking and integration during finetuning and inference, and generalizes more effectively than the methods that directly learn from concatenated graph triples. Experiments show that our proposed model achieves improved performance on five benchmark datasets, including question answering and knowledge base completion tasks.
Abstract:Self-attention mechanisms have achieved great success on a variety of NLP tasks due to its flexibility of capturing dependency between arbitrary positions in a sequence. For problems such as query-based summarization (Qsumm) and knowledge graph reasoning where each input sequence is associated with an extra query, explicitly modeling such conditional contextual dependencies can lead to a more accurate solution, which however cannot be captured by existing self-attention mechanisms. In this paper, we propose \textit{conditional self-attention} (CSA), a neural network module designed for conditional dependency modeling. CSA works by adjusting the pairwise attention between input tokens in a self-attention module with the matching score of the inputs to the given query. Thereby, the contextual dependencies modeled by CSA will be highly relevant to the query. We further studied variants of CSA defined by different types of attention. Experiments on Debatepedia and HotpotQA benchmark datasets show CSA consistently outperforms vanilla Transformer and previous models for the Qsumm problem.
Abstract:In this work, we present X-SQL, a new network architecture for the problem of parsing natural language to SQL query. X-SQL proposes to enhance the structural schema representation with the contextual output from BERT-style pre-training model, and together with type information to learn a new schema representation for down-stream tasks. We evaluated X-SQL on the WikiSQL dataset and show its new state-of-the-art performance.
Abstract:We present a sequence-to-action parsing approach for the natural language to SQL task that incrementally fills the slots of a SQL query with feasible actions from a pre-defined inventory. To account for the fact that typically there are multiple correct SQL queries with the same or very similar semantics, we draw inspiration from syntactic parsing techniques and propose to train our sequence-to-action models with non-deterministic oracles. We evaluate our models on the WikiSQL dataset and achieve an execution accuracy of 83.7% on the test set, a 2.1% absolute improvement over the models trained with traditional static oracles assuming a single correct target SQL query. When further combined with the execution-guided decoding strategy, our model sets a new state-of-the-art performance at an execution accuracy of 87.1%.
Abstract:We consider the problem of neural semantic parsing, which translates natural language questions into executable SQL queries. We introduce a new mechanism, execution guidance, to leverage the semantics of SQL. It detects and excludes faulty programs during the decoding procedure by conditioning on the execution of partially generated program. The mechanism can be used with any autoregressive generative model, which we demonstrate on four state-of-the-art recurrent or template-based semantic parsing models. We demonstrate that execution guidance universally improves model performance on various text-to-SQL datasets with different scales and query complexity: WikiSQL, ATIS, and GeoQuery. As a result, we achieve new state-of-the-art execution accuracy of 83.8% on WikiSQL.
Abstract:Policy gradient methods have achieved remarkable successes in solving challenging reinforcement learning problems. However, it still often suffers from the large variance issue on policy gradient estimation, which leads to poor sample efficiency during training. In this work, we propose a control variate method to effectively reduce variance for policy gradient methods. Motivated by the Stein's identity, our method extends the previous control variate methods used in REINFORCE and advantage actor-critic by introducing more general action-dependent baseline functions. Empirical studies show that our method significantly improves the sample efficiency of the state-of-the-art policy gradient approaches.
Abstract:High dimensional structured data such as text and images is often poorly understood and misrepresented in statistical modeling. The standard histogram representation suffers from high variance and performs poorly in general. We explore novel connections between statistical translation, heat kernels on manifolds and graphs, and expected distances. These connections provide a new framework for unsupervised metric learning for text documents. Experiments indicate that the resulting distances are generally superior to their more standard counterparts.
Abstract:Incorporating domain knowledge into the modeling process is an effective way to improve learning accuracy. However, as it is provided by humans, domain knowledge can only be specified with some degree of uncertainty. We propose to explicitly model such uncertainty through probabilistic constraints over the parameter space. In contrast to hard parameter constraints, our approach is effective also when the domain knowledge is inaccurate and generally results in superior modeling accuracy. We focus on generative and conditional modeling where the parameters are assigned a Dirichlet or Gaussian prior and demonstrate the framework with experiments on both synthetic and real-world data.