Get our free extension to see links to code for papers anywhere online!

 Add to Chrome

 Add to Firefox

CatalyzeX Code Finder - Browser extension linking code for ML papers across the web! | Product Hunt Embed
Rishabh Singh

Microsoft Research, Redmond

Deep Learning & Software Engineering: State of Research and Future Directions

Sep 17, 2020
Prem Devanbu, Matthew Dwyer, Sebastian Elbaum, Michael Lowry, Kevin Moran, Denys Poshyvanyk, Baishakhi Ray, Rishabh Singh, Xiangyu Zhang

* Community Report from the 2019 NSF Workshop on Deep Learning & Software Engineering, 37 pages 

  Access Paper or Ask Questions

BUSTLE: Bottom-up program-Synthesis Through Learning-guided Exploration

Jul 28, 2020
Augustus Odena, Kensen Shi, David Bieber, Rishabh Singh, Charles Sutton


  Access Paper or Ask Questions

Scaling Symbolic Methods using Gradients for Neural Model Explanation

Jun 29, 2020
Subham Sekhar Sahoo, Subhashini Venugopalan, Li Li, Rishabh Singh, Patrick Riley


  Access Paper or Ask Questions

Neural Program Synthesis with a Differentiable Fixer

Jun 19, 2020
Matej Balog, Rishabh Singh, Petros Maniatis, Charles Sutton


  Access Paper or Ask Questions

TF-Coder: Program Synthesis for Tensor Manipulations

Mar 19, 2020
Kensen Shi, David Bieber, Rishabh Singh


  Access Paper or Ask Questions

Towards Modular Algorithm Induction

Feb 27, 2020
Daniel A. Abolafia, Rishabh Singh, Manzil Zaheer, Charles Sutton

* 10 pages, 4 figures, 2 tables 

  Access Paper or Ask Questions

Towards a Kernel based Physical Interpretation of Model Uncertainty

Feb 21, 2020
Rishabh Singh, Jose C. Principe


  Access Paper or Ask Questions

Synthetic Datasets for Neural Program Synthesis

Dec 27, 2019
Richard Shin, Neel Kant, Kavi Gupta, Christopher Bender, Brandon Trabucco, Rishabh Singh, Dawn Song

* ICLR 2019 

  Access Paper or Ask Questions

Learning Transferable Graph Exploration

Oct 28, 2019
Hanjun Dai, Yujia Li, Chenglong Wang, Rishabh Singh, Po-Sen Huang, Pushmeet Kohli

* To appear in NeurIPS 2019 

  Access Paper or Ask Questions

Mo√čT: Interpretable and Verifiable Reinforcement Learning via Mixture of Expert Trees

Jun 16, 2019
Marko Vasic, Andrija Petrovic, Kaiyuan Wang, Mladen Nikolic, Rishabh Singh, Sarfraz Khurshid


  Access Paper or Ask Questions

Neural Program Repair by Jointly Learning to Localize and Repair

Apr 03, 2019
Marko Vasic, Aditya Kanade, Petros Maniatis, David Bieber, Rishabh Singh

* ICLR 2019 

  Access Paper or Ask Questions

Neural-Guided Symbolic Regression with Semantic Prior

Jan 23, 2019
Li Li, Minjie Fan, Rishabh Singh, Patrick Riley


  Access Paper or Ask Questions

Robust Text-to-SQL Generation with Execution-Guided Decoding

Sep 13, 2018
Chenglong Wang, Kedar Tatwawadi, Marc Brockschmidt, Po-Sen Huang, Yi Mao, Oleksandr Polozov, Rishabh Singh


  Access Paper or Ask Questions

Interpreting Neural Network Judgments via Minimal, Stable, and Symbolic Corrections

Aug 30, 2018
Xin Zhang, Armando Solar-Lezama, Rishabh Singh

* 24 pages 

  Access Paper or Ask Questions

Natural Language to Structured Query Generation via Meta-Learning

Jul 18, 2018
Po-Sen Huang, Chenglong Wang, Rishabh Singh, Wen-tau Yih, Xiaodong He

* in NAACL HLT 2018 

  Access Paper or Ask Questions

Towards Mixed Optimization for Reinforcement Learning with Program Synthesis

Jul 03, 2018
Surya Bhupatiraju, Kumar Krishna Agrawal, Rishabh Singh

* Updated publication details, format. Accepted at NAMPI workshop, ICML '18 

  Access Paper or Ask Questions

Dynamic Neural Program Embedding for Program Repair

Jun 30, 2018
Ke Wang, Rishabh Singh, Zhendong Su

* 9 pages 

  Access Paper or Ask Questions

Programmatically Interpretable Reinforcement Learning

Jun 08, 2018
Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, Swarat Chaudhuri

* Accepted by The 35th International Conference on Machine Learning (ICML 2018) 

  Access Paper or Ask Questions

Leveraging Grammar and Reinforcement Learning for Neural Program Synthesis

May 22, 2018
Rudy Bunel, Matthew Hausknecht, Jacob Devlin, Rishabh Singh, Pushmeet Kohli

* ICLR 2018 

  Access Paper or Ask Questions

Learning and analyzing vector encoding of symbolic representations

Mar 10, 2018
Roland Fernandez, Asli Celikyilmaz, Rishabh Singh, Paul Smolensky


  Access Paper or Ask Questions

Deep Reinforcement Fuzzing

Jan 14, 2018
Konstantin Böttinger, Patrice Godefroid, Rishabh Singh


  Access Paper or Ask Questions

SyGuS-Comp 2017: Results and Analysis

Nov 29, 2017
Rajeev Alur, Dana Fisman, Rishabh Singh, Armando Solar-Lezama

* EPTCS 260, 2017, pp. 97-115 
* In Proceedings SYNT 2017, arXiv:1711.10224. arXiv admin note: text overlap with arXiv:1611.07627, arXiv:1602.01170 

  Access Paper or Ask Questions

Not all bytes are equal: Neural byte sieve for fuzzing

Nov 10, 2017
Mohit Rajpal, William Blum, Rishabh Singh


  Access Paper or Ask Questions

Semantic Code Repair using Neuro-Symbolic Transformation Networks

Oct 30, 2017
Jacob Devlin, Jonathan Uesato, Rishabh Singh, Pushmeet Kohli


  Access Paper or Ask Questions

Neural Program Meta-Induction

Oct 11, 2017
Jacob Devlin, Rudy Bunel, Rishabh Singh, Matthew Hausknecht, Pushmeet Kohli

* 8 Pages + 1 page appendix 

  Access Paper or Ask Questions

Deep API Programmer: Learning to Program with APIs

Apr 14, 2017
Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed, Pushmeet Kohli

* 8 pages + 4 pages of supplementary material. Submitted to IJCAI 2017 

  Access Paper or Ask Questions

RobustFill: Neural Program Learning under Noisy I/O

Mar 21, 2017
Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed, Pushmeet Kohli

* 8 pages + 9 pages of supplementary material 

  Access Paper or Ask Questions

Learn&Fuzz: Machine Learning for Input Fuzzing

Jan 25, 2017
Patrice Godefroid, Hila Peleg, Rishabh Singh


  Access Paper or Ask Questions

Summary - TerpreT: A Probabilistic Programming Language for Program Induction

Dec 02, 2016
Alexander L. Gaunt, Marc Brockschmidt, Rishabh Singh, Nate Kushman, Pushmeet Kohli, Jonathan Taylor, Daniel Tarlow

* 7 pages, 2 figures, 4 tables in 1st Workshop on Neural Abstract Machines & Program Induction (NAMPI), @NIPS 2016 

  Access Paper or Ask Questions