Abstract:The development of trustworthy conversational information-seeking systems relies on dialogue models that can generate faithful and accurate responses based on relevant knowledge texts. However, two main challenges hinder this task. Firstly, language models may generate hallucinations due to data biases present in their pretraining corpus. Secondly, knowledge texts often contain redundant and irrelevant information that distracts the model's attention from the relevant text span. Previous works use additional data annotations on the knowledge texts to learn a knowledge identification module in order to bypass irrelevant information, but collecting such high-quality span annotations can be costly. In this work, we leverage reinforcement learning algorithms to overcome the above challenges by introducing a novel reward function. Our reward function combines an accuracy metric and a faithfulness metric to provide a balanced quality judgment of generated responses, which can be used as a cost-effective approximation to a human preference reward model when only a few preference annotations are available. Empirical experiments on two conversational information-seeking datasets demonstrate that our method can compete with other strong supervised learning baselines.
Abstract:Essential for an unfettered data market is the ability to discreetly select and evaluate training data before finalizing a transaction between the data owner and model owner. To safeguard the privacy of both data and model, this process involves scrutinizing the target model through Multi-Party Computation (MPC). While prior research has posited that the MPC-based evaluation of Transformer models is excessively resource-intensive, this paper introduces an innovative approach that renders data selection practical. The contributions of this study encompass three pivotal elements: (1) a groundbreaking pipeline for confidential data selection using MPC, (2) replicating intricate high-dimensional operations with simplified low-dimensional MLPs trained on a limited subset of pertinent data, and (3) implementing MPC in a concurrent, multi-phase manner. The proposed method is assessed across an array of Transformer models and NLP/CV benchmarks. In comparison to the direct MPC-based evaluation of the target model, our approach substantially reduces the time required, from thousands of hours to mere tens of hours, with only a nominal 0.20% dip in accuracy when training with the selected data.
Abstract:Although Shapley values have been shown to be highly effective for identifying harmful training instances, dataset size and model complexity constraints limit the ability to apply Shapley-based data valuation to fine-tuning large pre-trained language models. To address this, we propose TS-DShapley, an algorithm that reduces computational cost of Shapley-based data valuation through: 1) an efficient sampling-based method that aggregates Shapley values computed from subsets for valuation of the entire training set, and 2) a value transfer method that leverages value information extracted from a simple classifier trained using representations from the target language model. Our experiments applying TS-DShapley to select data for fine-tuning BERT-based language models on benchmark natural language understanding (NLU) datasets show that TS-DShapley outperforms existing data selection methods. Further, TS-DShapley can filter fine-tuning data to increase language model performance compared to training with the full fine-tuning dataset.
Abstract:Learning transferable representation of knowledge graphs (KGs) is challenging due to the heterogeneous, multi-relational nature of graph structures. Inspired by Transformer-based pretrained language models' success on learning transferable representation for texts, we introduce a novel inductive KG representation model (iHT) for KG completion by large-scale pre-training. iHT consists of a entity encoder (e.g., BERT) and a neighbor-aware relational scoring function both parameterized by Transformers. We first pre-train iHT on a large KG dataset, Wikidata5M. Our approach achieves new state-of-the-art results on matched evaluations, with a relative improvement of more than 25% in mean reciprocal rank over previous SOTA models. When further fine-tuned on smaller KGs with either entity and relational shifts, pre-trained iHT representations are shown to be transferable, significantly improving the performance on FB15K-237 and WN18RR.
Abstract:Recent NLP literature has seen growing interest in improving model interpretability. Along this direction, we propose a trainable neural network layer that learns a global interaction graph between words and then selects more informative words using the learned word interactions. Our layer, we call WIGRAPH, can plug into any neural network-based NLP text classifiers right after its word embedding layer. Across multiple SOTA NLP models and various NLP datasets, we demonstrate that adding the WIGRAPH layer substantially improves NLP models' interpretability and enhances models' prediction performance at the same time.
Abstract:Some recent works observed the instability of post-hoc explanations when input side perturbations are applied to the model. This raises the interest and concern in the stability of post-hoc explanations. However, the remaining question is: is the instability caused by the neural network model or the post-hoc explanation method? This work explores the potential source that leads to unstable post-hoc explanations. To separate the influence from the model, we propose a simple output probability perturbation method. Compared to prior input side perturbation methods, the output probability perturbation method can circumvent the neural model's potential effect on the explanations and allow the analysis on the explanation method. We evaluate the proposed method with three widely-used post-hoc explanation methods (LIME (Ribeiro et al., 2016), Kernel Shapley (Lundberg and Lee, 2017a), and Sample Shapley (Strumbelj and Kononenko, 2010)). The results demonstrate that the post-hoc methods are stable, barely producing discrepant explanations under output probability perturbations. The observation suggests that neural network models may be the primary source of fragile explanations.
Abstract:Data valuation, or the valuation of individual datum contributions, has seen growing interest in machine learning due to its demonstrable efficacy for tasks such as noisy label detection. In particular, due to the desirable axiomatic properties, several Shapley value approximation methods have been proposed. In these methods, the value function is typically defined as the predictive accuracy over the entire development set. However, this limits the ability to differentiate between training instances that are helpful or harmful to their own classes. Intuitively, instances that harm their own classes may be noisy or mislabeled and should receive a lower valuation than helpful instances. In this work, we propose CS-Shapley, a Shapley value with a new value function that discriminates between training instances' in-class and out-of-class contributions. Our theoretical analysis shows the proposed value function is (essentially) the unique function that satisfies two desirable properties for evaluating data values in classification. Further, our experiments on two benchmark evaluation tasks (data removal and noisy label detection) and four classifiers demonstrate the effectiveness of CS-Shapley over existing methods. Lastly, we evaluate the "transferability" of data values estimated from one classifier to others, and our results suggest Shapley-based data valuation is transferable for application across different models.
Abstract:Free-text rationales are a promising step towards explainable AI, yet their evaluation remains an open research problem. While existing metrics have mostly focused on measuring the direct association between the rationale and a given label, we argue that an ideal metric should also be able to focus on the new information uniquely provided in the rationale that is otherwise not provided in the input or the label. We investigate this research problem from an information-theoretic perspective using the conditional V-information. More concretely, we propose a metric called REV (Rationale Evaluation with conditional V-information), that can quantify the new information in a rationale supporting a given label beyond the information already available in the input or the label. Experiments on reasoning tasks across four benchmarks, including few-shot prompting with GPT-3, demonstrate the effectiveness of REV in evaluating different types of rationale-label pairs, compared to existing metrics. Through several quantitative comparisons, we demonstrate the capability of REV in providing more sensitive measurements of new information in free-text rationales with respect to a label. Furthermore, REV is consistent with human judgments on rationale evaluations. Overall, when used alongside traditional performance metrics, REV provides deeper insights into a models' reasoning and prediction processes.
Abstract:As model finetuning is central to the modern NLP, we set to maximize its efficiency. Motivated by training examples are often redundant, we design an algorithm that filters the examples in a streaming fashion. Our key techniques are two: (1) automatically determine a training loss threshold for skipping the backward propagation; and (2) maintain a meta predictor for further skipping the forward propagation. Incarnated as a three-stage process, on a diverse set of benchmarks our algorithm reduces the required training examples by up to 5$\times$ while only seeing minor degradation on average. Our method is effective even for as few as one training epoch, where each training example is encountered once. It is simple to implement and is compatible with the existing model finetuning optimizations such as layer freezing.
Abstract:Recently, neural models have been leveraged to significantly improve the performance of information extraction from semi-structured websites. However, a barrier for continued progress is the small number of datasets large enough to train these models. In this work, we introduce the PLAtE (Pages of Lists Attribute Extraction) dataset as a challenging new web extraction task. PLAtE focuses on shopping data, specifically extractions from product review pages with multiple items. PLAtE encompasses both the tasks of: (1) finding product-list segmentation boundaries and (2) extracting attributes for each product. PLAtE is composed of 53, 905 items from 6, 810 pages, making it the first large-scale list page web extraction dataset. We construct PLAtE by collecting list pages from Common Crawl, then annotating them on Mechanical Turk. Quantitative and qualitative analyses are performed to demonstrate PLAtE has high-quality annotations. We establish strong baseline performance on PLAtE with a SOTA model achieving an F1-score of 0.750 for attribute classification and 0.915 for segmentation, indicating opportunities for future research innovations in web extraction.