Abstract:Federated Clustering (FC) is crucial to mining knowledge from unlabeled non-Independent Identically Distributed (non-IID) data provided by multiple clients while preserving their privacy. Most existing attempts learn cluster distributions at local clients, and then securely pass the desensitized information to the server for aggregation. However, some tricky but common FC problems are still relatively unexplored, including the heterogeneity in terms of clients' communication capacity and the unknown number of proper clusters $k^*$. To further bridge the gap between FC and real application scenarios, this paper first shows that the clients' communication asynchrony and unknown $k^*$ are complex coupling problems, and then proposes an Asynchronous Federated Cluster Learning (AFCL) method accordingly. It spreads the excessive number of seed points to the clients as a learning medium and coordinates them across the clients to form a consensus. To alleviate the distribution imbalance cumulated due to the unforeseen asynchronous uploading from the heterogeneous clients, we also design a balancing mechanism for seeds updating. As a result, the seeds gradually adapt to each other to reveal a proper number of clusters. Extensive experiments demonstrate the efficacy of AFCL.
Abstract:Deep learning models are rapidly gaining interest for real-world applications in behavioral health. An important gap in current literature is how well such models generalize over different populations. We study Natural Language Processing (NLP) based models to explore portability over two different corpora highly mismatched in age. The first and larger corpus contains younger speakers. It is used to train an NLP model to predict depression. When testing on unseen speakers from the same age distribution, this model performs at AUC=0.82. We then test this model on the second corpus, which comprises seniors from a retirement community. Despite the large demographic differences in the two corpora, we saw only modest degradation in performance for the senior-corpus data, achieving AUC=0.76. Interestingly, in the senior population, we find AUC=0.81 for the subset of patients whose health state is consistent over time. Implications for demographic portability of speech-based applications are discussed.
Abstract:Speech-based algorithms have gained interest for the management of behavioral health conditions such as depression. We explore a speech-based transfer learning approach that uses a lightweight encoder and that transfers only the encoder weights, enabling a simplified run-time model. Our study uses a large data set containing roughly two orders of magnitude more speakers and sessions than used in prior work. The large data set enables reliable estimation of improvement from transfer learning. Results for the prediction of PHQ-8 labels show up to 27% relative performance gains for binary classification; these gains are statistically significant with a p-value close to zero. Improvements were also found for regression. Additionally, the gain from transfer learning does not appear to require strong source task performance. Results suggest that this approach is flexible and offers promise for efficient implementation.
Abstract:Logs are critical resources that record events, activities, or messages produced by software applications, operating systems, servers, and network devices. However, consolidating the heterogeneous logs and cross-referencing them is challenging and complicated. Manually analyzing the log data is time-consuming and prone to errors. LogBabylon is a centralized log data consolidating solution that leverages Large Language Models (LLMs) integrated with Retrieval-Augmented Generation (RAG) technology. LogBabylon interprets the log data in a human-readable way and adds insight analysis of the system performance and anomaly alerts. It provides a paramount view of the system landscape, enabling proactive management and rapid incident response. LogBabylon consolidates diverse log sources and enhances the extracted information's accuracy and relevancy. This facilitates a deeper understanding of log data, supporting more effective decision-making and operational efficiency. Furthermore, LogBabylon streamlines the log analysis process, significantly reducing the time and effort required to interpret complex datasets. Its capabilities extend to generating context-aware insights, offering an invaluable tool for continuous monitoring, performance optimization, and security assurance in dynamic computing environments.
Abstract:Clustering complex data in the form of attributed graphs has attracted increasing attention, where appropriate graph representation is a critical prerequisite for accurate cluster analysis. However, the Graph Convolutional Network will homogenize the representation of graph nodes due to the well-known over-smoothing effect. This limits the network architecture to a shallow one, losing the ability to capture the critical global distribution information for clustering. Therefore, we propose a generalized graph auto-encoder network, which introduces quaternion operations to the encoders to achieve efficient structured feature representation learning without incurring deeper network and larger-scale parameters. The generalization of our method lies in the following two aspects: 1) connecting the quaternion operation naturally suitable for four feature components with graph data of arbitrary attribute dimensions, and 2) introducing a generalized graph clustering objective as a loss term to obtain clustering-friendly representations without requiring a pre-specified number of clusters $k$. It turns out that the representations of nodes learned by the proposed Graph Clustering based on Generalized Quaternion representation learning (GCGQ) are more discriminative, containing global distribution information, and are more general, suiting downstream clustering under different $k$s. Extensive experiments including significance tests, ablation studies, and qualitative results, illustrate the superiority of GCGQ. The source code is temporarily opened at \url{https://anonymous.4open.science/r/ICLR-25-No7181-codes}.
Abstract:This paper proposes an unsupervised deep-learning (DL) approach by integrating transformer and Kolmogorov-Arnold networks (KAN) termed KANsformer to realize scalable beamforming for mobile communication systems. Specifically, we consider a classic multi-input-single-output energy efficiency maximization problem subject to the total power budget. The proposed KANsformer first extracts hidden features via a multi-head self-attention mechanism and then reads out the desired beamforming design via KAN. Numerical results are provided to evaluate the KANsformer in terms of generalization performance, transfer learning and ablation experiment. Overall, the KANsformer outperforms existing benchmark DL approaches, and is adaptable to the change in the number of mobile users with real-time and near-optimal inference.
Abstract:Long-tail learning has garnered widespread attention and achieved significant progress in recent times. However, even with pre-trained prior knowledge, models still exhibit weaker generalization performance on tail classes. The promising Sharpness-Aware Minimization (SAM) can effectively improve the generalization capability of models by seeking out flat minima in the loss landscape, which, however, comes at the cost of doubling the computational time. Since the update rule of SAM necessitates two consecutive (non-parallelizable) forward and backpropagation at each step. To address this issue, we propose a novel method called Random SAM prompt tuning (RSAM-PT) to improve the model generalization, requiring only one-step gradient computation at each step. Specifically, we search for the gradient descent direction within a random neighborhood of the parameters during each gradient update. To amplify the impact of tail-class samples and avoid overfitting, we employ the deferred re-weight scheme to increase the significance of tail-class samples. The classification accuracy of long-tailed data can be significantly improved by the proposed RSAM-PT, particularly for tail classes. RSAM-PT achieves the state-of-the-art performance of 90.3\%, 76.5\%, and 50.1\% on benchmark datasets CIFAR100-LT (IF 100), iNaturalist 2018, and Places-LT, respectively. The source code is temporarily available at https://github.com/Keke921/GNM-PT.
Abstract:This paper applies graph neural networks (GNN) in UAV communications to optimize the placement and transmission design. We consider a multiple-user multiple-input-single-output UAV communication system where a UAV intends to find a placement to hover and serve users with maximum energy efficiency (EE). To facilitate the GNN-based learning, we adopt the hybrid maximum ratio transmission and zero forcing scheme to design the beamforming vectors and a feature augment is implemented by manually setting edge features. Furthermore, we propose a two-stage GNN-based model where the first stage and the second stage yield the placement and the transmission design, respectively. The two stages are connected via a residual and their learnable weights are jointly optimized by via unsupervised learning. Numerical results illustrate the effectiveness and validate the scalability to both UAV antennas and users of the proposed model.
Abstract:This paper investigates deep learning enabled beamforming design for ultra-dense wireless networks by integrating prior knowledge and graph neural network (GNN), named model-based GNN. A energy efficiency (EE) maximization problem is formulated subject to power budget and quality of service (QoS) requirements, which is reformulated based on the minimum mean square error scheme and the hybrid zero-forcing and maximum ratio transmission schemes. Based on the reformulated problem, the model-based GNN to realize the mapping from channel state information to beamforming vectors. Particular, the multi-head attention mechanism and residual connection are adopted to enhance the feature extracting, and a scheme selection module is designed to improve the adaptability of GNN. The unsupervised learning is adopted, and a various-input training strategy is proposed to enhance the stability of GNN. Numerical results demonstrate the millisecond-level response with limited performance loss, the scalability to different users and the adaptability to various channel conditions and QoS requirements of the model-based GNN in ultra-dense wireless networks.
Abstract:Kolmogorov Arnold Networks (KAN) are highly efficient in inference and can handle complex patterns once trained, making them desirable for production environments and ensuring a fast service experience in the finance and electronic shopping industries. However, we found that KAN, in general, is not suitable for fraud detection problems. We also discovered a quick method to determine whether a problem is solvable by KAN: if the data can be effectively separated using spline interpolation with varying intervals after applying Principal Component Analysis (PCA) to reduce the data dimensions to two, KAN can outperform most machine learning algorithms. Otherwise, it indicates KAN may not solve the problem effectively compared to other machine learning algorithms. We also propose a heuristic approach for selecting the appropriate hyperparameters for KAN to significantly accelerate training time compared to grid search hyperparameter tuning, which usually takes a month for a comprehensive grid search. Specifically, the width parameter should generally follow a pyramid structure, allowing efficient spline mixing, and k should be fixed at 15, with the grid number fixed at 5. This streamlined approach minimizes the number of evaluations required, significantly speeding up the hyperparameter tuning process while still achieving robust performance metrics.