Abstract:Proficiency in microanastomosis is a fundamental competency across multiple microsurgical disciplines. These procedures demand exceptional precision and refined technical skills, making effective, standardized assessment methods essential. Traditionally, the evaluation of microsurgical techniques has relied heavily on the subjective judgment of expert raters. They are inherently constrained by limitations such as inter-rater variability, lack of standardized evaluation criteria, susceptibility to cognitive bias, and the time-intensive nature of manual review. These shortcomings underscore the urgent need for an objective, reliable, and automated system capable of assessing microsurgical performance with consistency and scalability. To bridge this gap, we propose a novel AI framework for the automated assessment of microanastomosis instrument handling skills. The system integrates four core components: (1) an instrument detection module based on the You Only Look Once (YOLO) architecture; (2) an instrument tracking module developed from Deep Simple Online and Realtime Tracking (DeepSORT); (3) an instrument tip localization module employing shape descriptors; and (4) a supervised classification module trained on expert-labeled data to evaluate instrument handling proficiency. Experimental results demonstrate the effectiveness of the framework, achieving an instrument detection precision of 97%, with a mean Average Precision (mAP) of 96%, measured by Intersection over Union (IoU) thresholds ranging from 50% to 95% (mAP50-95).
Abstract:The development of effective training and evaluation strategies is critical. Conventional methods for assessing surgical proficiency typically rely on expert supervision, either through onsite observation or retrospective analysis of recorded procedures. However, these approaches are inherently subjective, susceptible to inter-rater variability, and require substantial time and effort from expert surgeons. These demands are often impractical in low- and middle-income countries, thereby limiting the scalability and consistency of such methods across training programs. To address these limitations, we propose a novel AI-driven framework for the automated assessment of microanastomosis performance. The system integrates a video transformer architecture based on TimeSformer, improved with hierarchical temporal attention and weighted spatial attention mechanisms, to achieve accurate action recognition within surgical videos. Fine-grained motion features are then extracted using a YOLO-based object detection and tracking method, allowing for detailed analysis of instrument kinematics. Performance is evaluated along five aspects of microanastomosis skill, including overall action execution, motion quality during procedure-critical actions, and general instrument handling. Experimental validation using a dataset of 58 expert-annotated videos demonstrates the effectiveness of the system, achieving 87.7% frame-level accuracy in action segmentation that increased to 93.62% with post-processing, and an average classification accuracy of 76% in replicating expert assessments across all skill aspects. These findings highlight the system's potential to provide objective, consistent, and interpretable feedback, thereby enabling more standardized, data-driven training and evaluation in surgical education.