Abstract:Most alignment research today focuses on designing new learning algorithms using datasets like Anthropic-HH, assuming human feedback data is inherently reliable. However, little attention has been given to the qualitative unreliability of human feedback and its impact on alignment. To address this gap, we conduct a comprehensive study and provide an in-depth analysis of human feedback data. We assess feedback reliability using a committee of gold reward models, revealing that over 25% of the dataset shows low or no agreement with these models, implying a high degree of unreliability. Through a qualitative analysis, we identify six key sources of unreliability, such as mis-labeling, subjective preferences, differing criteria and thresholds for helpfulness and harmlessness, etc. Lastly, to mitigate unreliability, we propose Source-Aware Cleaning, an automatic data-cleaning method guided by the insight of our qualitative analysis, to significantly improve data quality. Extensive experiments demonstrate that models trained on our cleaned dataset, HH-Clean, substantially outperform those trained on the original dataset. We release HH-Clean to support more reliable LLM alignment evaluation in the future.
Abstract:The surge in applications of large language models (LLMs) has prompted concerns about the generation of misleading or fabricated information, known as hallucinations. Therefore, detecting hallucinations has become critical to maintaining trust in LLM-generated content. A primary challenge in learning a truthfulness classifier is the lack of a large amount of labeled truthful and hallucinated data. To address the challenge, we introduce HaloScope, a novel learning framework that leverages the unlabeled LLM generations in the wild for hallucination detection. Such unlabeled data arises freely upon deploying LLMs in the open world, and consists of both truthful and hallucinated information. To harness the unlabeled data, we present an automated membership estimation score for distinguishing between truthful and untruthful generations within unlabeled mixture data, thereby enabling the training of a binary truthfulness classifier on top. Importantly, our framework does not require extra data collection and human annotations, offering strong flexibility and practicality for real-world applications. Extensive experiments show that HaloScope can achieve superior hallucination detection performance, outperforming the competitive rivals by a significant margin. Code is available at https://github.com/deeplearningwisc/haloscope.
Abstract:Out-of-distribution (OOD) learning often relies heavily on statistical approaches or predefined assumptions about OOD data distributions, hindering their efficacy in addressing multifaceted challenges of OOD generalization and OOD detection in real-world deployment environments. This paper presents a novel framework for OOD learning with human feedback, which can provide invaluable insights into the nature of OOD shifts and guide effective model adaptation. Our framework capitalizes on the freely available unlabeled data in the wild that captures the environmental test-time OOD distributions under both covariate and semantic shifts. To harness such data, our key idea is to selectively provide human feedback and label a small number of informative samples from the wild data distribution, which are then used to train a multi-class classifier and an OOD detector. By exploiting human feedback, we enhance the robustness and reliability of machine learning models, equipping them with the capability to handle OOD scenarios with greater precision. We provide theoretical insights on the generalization error bounds to justify our algorithm. Extensive experiments show the superiority of our method, outperforming the current state-of-the-art by a significant margin.
Abstract:Detecting data points deviating from the training distribution is pivotal for ensuring reliable machine learning. Extensive research has been dedicated to the challenge, spanning classical anomaly detection techniques to contemporary out-of-distribution (OOD) detection approaches. While OOD detection commonly relies on supervised learning from a labeled in-distribution (ID) dataset, anomaly detection may treat the entire ID data as a single class and disregard ID labels. This fundamental distinction raises a significant question that has yet to be rigorously explored: when and how does ID label help OOD detection? This paper bridges this gap by offering a formal understanding to theoretically delineate the impact of ID labels on OOD detection. We employ a graph-theoretic approach, rigorously analyzing the separability of ID data from OOD data in a closed-form manner. Key to our approach is the characterization of data representations through spectral decomposition on the graph. Leveraging these representations, we establish a provable error bound that compares the OOD detection performance with and without ID labels, unveiling conditions for achieving enhanced OOD detection. Lastly, we present empirical results on both simulated and real datasets, validating theoretical guarantees and reinforcing our insights. Code is publicly available at https://github.com/deeplearning-wisc/id_label.
Abstract:Despite comprising one-third of global languages, African languages are critically underrepresented in Artificial Intelligence (AI), threatening linguistic diversity and cultural heritage. Ghanaian languages, in particular, face an alarming decline, with documented extinction and several at risk. This study pioneers a comprehensive survey of Natural Language Processing (NLP) research focused on Ghanaian languages, identifying methodologies, datasets, and techniques employed. Additionally, we create a detailed roadmap outlining challenges, best practices, and future directions, aiming to improve accessibility for researchers. This work serves as a foundational resource for Ghanaian NLP research and underscores the critical need for integrating global linguistic diversity into AI development.
Abstract:Using unlabeled data to regularize the machine learning models has demonstrated promise for improving safety and reliability in detecting out-of-distribution (OOD) data. Harnessing the power of unlabeled in-the-wild data is non-trivial due to the heterogeneity of both in-distribution (ID) and OOD data. This lack of a clean set of OOD samples poses significant challenges in learning an optimal OOD classifier. Currently, there is a lack of research on formally understanding how unlabeled data helps OOD detection. This paper bridges the gap by introducing a new learning framework SAL (Separate And Learn) that offers both strong theoretical guarantees and empirical effectiveness. The framework separates candidate outliers from the unlabeled data and then trains an OOD classifier using the candidate outliers and the labeled ID data. Theoretically, we provide rigorous error bounds from the lens of separability and learnability, formally justifying the two components in our algorithm. Our theory shows that SAL can separate the candidate outliers with small error rates, which leads to a generalization guarantee for the learned OOD classifier. Empirically, SAL achieves state-of-the-art performance on common benchmarks, reinforcing our theoretical insights. Code is publicly available at https://github.com/deeplearning-wisc/sal.
Abstract:Utilizing auxiliary outlier datasets to regularize the machine learning model has demonstrated promise for out-of-distribution (OOD) detection and safe prediction. Due to the labor intensity in data collection and cleaning, automating outlier data generation has been a long-desired alternative. Despite the appeal, generating photo-realistic outliers in the high dimensional pixel space has been an open challenge for the field. To tackle the problem, this paper proposes a new framework DREAM-OOD, which enables imagining photo-realistic outliers by way of diffusion models, provided with only the in-distribution (ID) data and classes. Specifically, DREAM-OOD learns a text-conditioned latent space based on ID data, and then samples outliers in the low-likelihood region via the latent, which can be decoded into images by the diffusion model. Different from prior works, DREAM-OOD enables visualizing and understanding the imagined outliers, directly in the pixel space. We conduct comprehensive quantitative and qualitative studies to understand the efficacy of DREAM-OOD, and show that training with the samples generated by DREAM-OOD can benefit OOD detection performance. Code is publicly available at https://github.com/deeplearning-wisc/dream-ood.
Abstract:Out-of-Distribution (OOD) detection is critical for the reliable operation of open-world intelligent systems. Despite the emergence of an increasing number of OOD detection methods, the evaluation inconsistencies present challenges for tracking the progress in this field. OpenOOD v1 initiated the unification of the OOD detection evaluation but faced limitations in scalability and usability. In response, this paper presents OpenOOD v1.5, a significant improvement from its predecessor that ensures accurate, standardized, and user-friendly evaluation of OOD detection methodologies. Notably, OpenOOD v1.5 extends its evaluation capabilities to large-scale datasets such as ImageNet, investigates full-spectrum OOD detection which is important yet underexplored, and introduces new features including an online leaderboard and an easy-to-use evaluator. This work also contributes in-depth analysis and insights derived from comprehensive experimental results, thereby enriching the knowledge pool of OOD detection methodologies. With these enhancements, OpenOOD v1.5 aims to drive advancements and offer a more robust and comprehensive evaluation benchmark for OOD detection research.
Abstract:Modern machine learning models deployed in the wild can encounter both covariate and semantic shifts, giving rise to the problems of out-of-distribution (OOD) generalization and OOD detection respectively. While both problems have received significant research attention lately, they have been pursued independently. This may not be surprising, since the two tasks have seemingly conflicting goals. This paper provides a new unified approach that is capable of simultaneously generalizing to covariate shifts while robustly detecting semantic shifts. We propose a margin-based learning framework that exploits freely available unlabeled data in the wild that captures the environmental test-time OOD distributions under both covariate and semantic shifts. We show both empirically and theoretically that the proposed margin constraint is the key to achieving both OOD generalization and detection. Extensive experiments show the superiority of our framework, outperforming competitive baselines that specialize in either OOD generalization or OOD detection. Code is publicly available at https://github.com/deeplearning-wisc/scone.
Abstract:Out-of-distribution (OOD) detection is indispensable for safely deploying machine learning models in the wild. One of the key challenges is that models lack supervision signals from unknown data, and as a result, can produce overconfident predictions on OOD data. Recent work on outlier synthesis modeled the feature space as parametric Gaussian distribution, a strong and restrictive assumption that might not hold in reality. In this paper, we propose a novel framework, Non-Parametric Outlier Synthesis (NPOS), which generates artificial OOD training data and facilitates learning a reliable decision boundary between ID and OOD data. Importantly, our proposed synthesis approach does not make any distributional assumption on the ID embeddings, thereby offering strong flexibility and generality. We show that our synthesis approach can be mathematically interpreted as a rejection sampling framework. Extensive experiments show that NPOS can achieve superior OOD detection performance, outperforming the competitive rivals by a significant margin. Code is publicly available at https://github.com/deeplearning-wisc/npos.