Abstract:Recent studies show that large language models (LLMs) can be instructed to effectively perform zero-shot passage re-ranking, in which the results of a first stage retrieval method, such as BM25, are rated and reordered to improve relevance. In this work, we improve LLM-based re-ranking by algorithmically selecting few-shot demonstrations to include in the prompt. Our analysis investigates the conditions where demonstrations are most helpful, and shows that adding even one demonstration is significantly beneficial. We propose a novel demonstration selection strategy based on difficulty rather than the commonly used semantic similarity. Furthermore, we find that demonstrations helpful for ranking are also effective at question generation. We hope our work will spur more principled research into question generation and passage ranking.
Abstract:Zero-shot text rankers powered by recent LLMs achieve remarkable ranking performance by simply prompting. Existing prompts for pointwise LLM rankers mostly ask the model to choose from binary relevance labels like "Yes" and "No". However, the lack of intermediate relevance label options may cause the LLM to provide noisy or biased answers for documents that are partially relevant to the query. We propose to incorporate fine-grained relevance labels into the prompt for LLM rankers, enabling them to better differentiate among documents with different levels of relevance to the query and thus derive a more accurate ranking. We study two variants of the prompt template, coupled with different numbers of relevance levels. Our experiments on 8 BEIR data sets show that adding fine-grained relevance labels significantly improves the performance of LLM rankers.
Abstract:Ranking documents using Large Language Models (LLMs) by directly feeding the query and candidate documents into the prompt is an interesting and practical problem. However, there has been limited success so far, as researchers have found it difficult to outperform fine-tuned baseline rankers on benchmark datasets. We analyze pointwise and listwise ranking prompts used by existing methods and argue that off-the-shelf LLMs do not fully understand these ranking formulations, possibly due to the nature of how LLMs are trained. In this paper, we propose to significantly reduce the burden on LLMs by using a new technique called Pairwise Ranking Prompting (PRP). Our results are the first in the literature to achieve state-of-the-art ranking performance on standard benchmarks using moderate-sized open-sourced LLMs. On TREC-DL2020, PRP based on the Flan-UL2 model with 20B parameters outperforms the previous best approach in the literature, which is based on the blackbox commercial GPT-4 that has 50x (estimated) model size, by over 5% at NDCG@1. On TREC-DL2019, PRP is only inferior to the GPT-4 solution on the NDCG@5 and NDCG@10 metrics, while outperforming other existing solutions, such as InstructGPT which has 175B parameters, by over 10% for nearly all ranking metrics. Furthermore, we propose several variants of PRP to improve efficiency and show that it is possible to achieve competitive results even with linear complexity. We also discuss other benefits of PRP, such as supporting both generation and scoring LLM APIs, as well as being insensitive to input ordering.
Abstract:Graded labels are ubiquitous in real-world learning-to-rank applications, especially in human rated relevance data. Traditional learning-to-rank techniques aim to optimize the ranked order of documents. They typically, however, ignore predicting actual grades. This prevents them from being adopted in applications where grades matter, such as filtering out ``poor'' documents. Achieving both good ranking performance and good grade prediction performance is still an under-explored problem. Existing research either focuses only on ranking performance by not calibrating model outputs, or treats grades as numerical values, assuming labels are on a linear scale and failing to leverage the ordinal grade information. In this paper, we conduct a rigorous study of learning to rank with grades, where both ranking performance and grade prediction performance are important. We provide a formal discussion on how to perform ranking with non-scalar predictions for grades, and propose a multiobjective formulation to jointly optimize both ranking and grade predictions. In experiments, we verify on several public datasets that our methods are able to push the Pareto frontier of the tradeoff between ranking and grade prediction performance, showing the benefit of leveraging ordinal grade information.
Abstract:The distillation of ranking models has become an important topic in both academia and industry. In recent years, several advanced methods have been proposed to tackle this problem, often leveraging ranking information from teacher rankers that is absent in traditional classification settings. To date, there is no well-established consensus on how to evaluate this class of models. Moreover, inconsistent benchmarking on a wide range of tasks and datasets make it difficult to assess or invigorate advances in this field. This paper first examines representative prior arts on ranking distillation, and raises three questions to be answered around methodology and reproducibility. To that end, we propose a systematic and unified benchmark, Ranking Distillation Suite (RD-Suite), which is a suite of tasks with 4 large real-world datasets, encompassing two major modalities (textual and numeric) and two applications (standard distillation and distillation transfer). RD-Suite consists of benchmark results that challenge some of the common wisdom in the field, and the release of datasets with teacher scores and evaluation scripts for future research. RD-Suite paves the way towards better understanding of ranking distillation, facilities more research in this direction, and presents new challenges.
Abstract:This paper introduces the award-winning deep learning (DL) library called LibAUC for implementing state-of-the-art algorithms towards optimizing a family of risk functions named X-risks. X-risks refer to a family of compositional functions in which the loss function of each data point is defined in a way that contrasts the data point with a large number of others. They have broad applications in AI for solving classical and emerging problems, including but not limited to classification for imbalanced data (CID), learning to rank (LTR), and contrastive learning of representations (CLR). The motivation of developing LibAUC is to address the convergence issues of existing libraries for solving these problems. In particular, existing libraries may not converge or require very large mini-batch sizes in order to attain good performance for these problems, due to the usage of the standard mini-batch technique in the empirical risk minimization (ERM) framework. Our library is for deep X-risk optimization (DXO) that has achieved great success in solving a variety of tasks for CID, LTR and CLR. The contributions of this paper include: (1) It introduces a new mini-batch based pipeline for implementing DXO algorithms, which differs from existing DL pipeline in the design of controlled data samplers and dynamic mini-batch losses; (2) It provides extensive benchmarking experiments for ablation studies and comparison with existing libraries. The LibAUC library features scalable performance for millions of items to be contrasted, faster and better convergence than existing libraries for optimizing X-risks, seamless PyTorch deployment and versatile APIs for various loss optimization. Our library is available to the open source community at https://github.com/Optimization-AI/LibAUC, to facilitate further academic research and industrial applications.
Abstract:Query expansion is a widely used technique to improve the recall of search systems. In this paper, we propose an approach to query expansion that leverages the generative abilities of Large Language Models (LLMs). Unlike traditional query expansion approaches such as Pseudo-Relevance Feedback (PRF) that relies on retrieving a good set of pseudo-relevant documents to expand queries, we rely on the generative and creative abilities of an LLM and leverage the knowledge inherent in the model. We study a variety of different prompts, including zero-shot, few-shot and Chain-of-Thought (CoT). We find that CoT prompts are especially useful for query expansion as these prompts instruct the model to break queries down step-by-step and can provide a large number of terms related to the original query. Experimental results on MS-MARCO and BEIR demonstrate that query expansions generated by LLMs can be more powerful than traditional query expansion methods.
Abstract:Ranking is at the core of Information Retrieval. Classic ranking optimization studies often treat ranking as a sorting problem with the assumption that the best performance of ranking would be achieved if we rank items according to their individual utility. Accordingly, considerable ranking metrics have been developed and learning-to-rank algorithms that have been designed to optimize these simple performance metrics have been widely used in modern IR systems. As applications evolve, however, people's need for information retrieval have shifted from simply retrieving relevant documents to more advanced information services that satisfy their complex working and entertainment needs. Thus, more complicated and user-centric objectives such as user satisfaction and engagement have been adopted to evaluate modern IR systems today. Those objectives, unfortunately, are difficult to be optimized under existing learning-to-rank frameworks as they are subject to great variance and complicated structures that cannot be explicitly explained or formulated with math equations like those simple performance metrics. This leads to the following research question -- how to optimize result ranking for complex ranking metrics without knowing their internal structures? To address this question, we conduct formal analysis on the limitation of existing ranking optimization techniques and describe three research tasks in \textit{Metric-agnostic Ranking Optimization}. Through the discussion of potential solutions to these tasks, we hope to encourage more people to look into the problem of ranking optimization in complex search and recommendation scenarios.
Abstract:Unbiased learning to rank (ULTR) studies the problem of mitigating various biases from implicit user feedback data such as clicks, and has been receiving considerable attention recently. A popular ULTR approach for real-world applications uses a two-tower architecture, where click modeling is factorized into a relevance tower with regular input features, and a bias tower with bias-relevant inputs such as the position of a document. A successful factorization will allow the relevance tower to be exempt from biases. In this work, we identify a critical issue that existing ULTR methods ignored - the bias tower can be confounded with the relevance tower via the underlying true relevance. In particular, the positions were determined by the logging policy, i.e., the previous production model, which would possess relevance information. We give both theoretical analysis and empirical results to show the negative effects on relevance tower due to such a correlation. We then propose three methods to mitigate the negative confounding effects by better disentangling relevance and bias. Empirical results on both controlled public datasets and a large-scale industry dataset show the effectiveness of the proposed approaches.
Abstract:Domain adaptation aims to transfer the knowledge acquired by models trained on (data-rich) source domains to (low-resource) target domains, for which a popular method is invariant representation learning. While they have been studied extensively for classification and regression problems, how they apply to ranking problems, where the data and metrics have a list structure, is not well understood. Theoretically, we establish a domain adaptation generalization bound for ranking under listwise metrics such as MRR and NDCG. The bound suggests an adaptation method via learning list-level domain-invariant feature representations, whose benefits are empirically demonstrated by unsupervised domain adaptation experiments on real-world ranking tasks, including passage reranking. A key message is that for domain adaptation, the representations should be analyzed at the same level at which the metric is computed, as we show that learning invariant representations at the list level is most effective for adaptation on ranking problems.