Michigan State University
Abstract:The post-processing approaches are becoming prominent techniques to enhance machine learning models' fairness because of their intuitiveness, low computational cost, and excellent scalability. However, most existing post-processing methods are designed for task-specific fairness measures and are limited to single-output models. In this paper, we introduce a post-processing method for multi-output models, such as the ones used for multi-task/multi-class classification and representation learning, to enhance a model's distributional parity, a task-agnostic fairness measure. Existing techniques to achieve distributional parity are based on the (inverse) cumulative density function of a model's output, which is limited to single-output models. Extending previous works, our method employs an optimal transport mapping to move a model's outputs across different groups towards their empirical Wasserstein barycenter. An approximation technique is applied to reduce the complexity of computing the exact barycenter and a kernel regression method is proposed for extending this process to out-of-sample data. Our empirical studies, which compare our method to current existing post-processing baselines on multi-task/multi-class classification and representation learning tasks, demonstrate the effectiveness of the proposed approach.
Abstract:Existing studies of training state-of-the-art Contrastive Language-Image Pretraining (CLIP) models on large-scale data involve hundreds of or even thousands of GPUs due to the requirement of a large batch size. However, such a large amount of resources is not accessible to most people. While advanced compositional optimization techniques for optimizing global contrastive losses have been demonstrated effective for removing the requirement of large batch size, their performance on large-scale data remains underexplored and not optimized. To bridge the gap, this paper explores several aspects of CLIP training with limited resources (e.g., up to tens of GPUs). First, we introduce FastCLIP, a general CLIP training framework built on advanced compositional optimization techniques while designed and optimized for the distributed setting. Our framework is equipped with an efficient gradient reduction strategy to reduce communication overhead. Second, to further boost training efficiency, we investigate three components of the framework from an optimization perspective: the schedule of the inner learning rate, the update rules of the temperature parameter and the model parameters, respectively. Experiments on different strategies for each component shed light on how to conduct CLIP training more efficiently. Finally, we benchmark the performance of FastCLIP and the state-of-the-art training baseline (OpenCLIP) on different compute scales up to 32 GPUs on 8 nodes, and three data scales ranging from 2.7 million, 9.1 million to 315 million image-text pairs to demonstrate the significant improvement of FastCLIP in the resource-limited setting. We release the code of FastCLIP at https://github.com/Optimization-AI/fast_clip .
Abstract:Implicit graph neural networks have gained popularity in recent years as they capture long-range dependencies while improving predictive performance in static graphs. Despite the tussle between performance degradation due to the oversmoothing of learned embeddings and long-range dependency being more pronounced in dynamic graphs, as features are aggregated both across neighborhood and time, no prior work has proposed an implicit graph neural model in a dynamic setting. In this paper, we present Implicit Dynamic Graph Neural Network (IDGNN) a novel implicit neural network for dynamic graphs which is the first of its kind. A key characteristic of IDGNN is that it demonstrably is well-posed, i.e., it is theoretically guaranteed to have a fixed-point representation. We then demonstrate that the standard iterative algorithm often used to train implicit models is computationally expensive in our dynamic setting as it involves computing gradients, which themselves have to be estimated in an iterative manner. To overcome this, we pose an equivalent bilevel optimization problem and propose an efficient single-loop training algorithm that avoids iterative computation by maintaining moving averages of key components of the gradients. We conduct extensive experiments on real-world datasets on both classification and regression tasks to demonstrate the superiority of our approach over the state-of-the-art baselines. We also demonstrate that our bi-level optimization framework maintains the performance of the expensive iterative algorithm while obtaining up to \textbf{1600x} speed-up.
Abstract:This paper studies learning fair encoders in a self-supervised learning (SSL) setting, in which all data are unlabeled and only a small portion of them are annotated with sensitive attribute. Adversarial fair representation learning is well suited for this scenario by minimizing a contrastive loss over unlabeled data while maximizing an adversarial loss of predicting the sensitive attribute over the data with sensitive attribute. Nevertheless, optimizing adversarial fair representation learning presents significant challenges due to solving a non-convex non-concave minimax game. The complexity deepens when incorporating a global contrastive loss that contrasts each anchor data point against all other examples. A central question is ``{\it can we design a provable yet efficient algorithm for solving adversarial fair self-supervised contrastive learning}?'' Building on advanced optimization techniques, we propose a stochastic algorithm dubbed SoFCLR with a convergence analysis under reasonable conditions without requring a large batch size. We conduct extensive experiments to demonstrate the effectiveness of the proposed approach for downstream classification with eight fairness notions.
Abstract:Reinforcement learning from human feedback (RLHF) is a prevalent approach to align AI systems with human values by learning rewards from human preference data. Due to various reasons, however, such data typically takes the form of rankings over pairs of trajectory segments, which fails to capture the varying strengths of preferences across different pairs. In this paper, we propose a novel adaptive preference loss, underpinned by distributionally robust optimization (DRO), designed to address this uncertainty in preference strength. By incorporating an adaptive scaling parameter into the loss for each pair, our method increases the flexibility of the reward function. Specifically, it assigns small scaling parameters to pairs with ambiguous preferences, leading to more comparable rewards, and large scaling parameters to those with clear preferences for more distinct rewards. Computationally, our proposed loss function is strictly convex and univariate with respect to each scaling parameter, enabling its efficient optimization through a simple second-order algorithm. Our method is versatile and can be readily adapted to various preference optimization frameworks, including direct preference optimization (DPO). Our experiments with robotic control and natural language generation with large language models (LLMs) show that our method not only improves policy performance but also aligns reward function selection more closely with policy optimization, simplifying the hyperparameter tuning process.
Abstract:In this paper, we study a class of non-smooth non-convex problems in the form of $\min_{x}[\max_{y\in Y}\phi(x, y) - \max_{z\in Z}\psi(x, z)]$, where both $\Phi(x) = \max_{y\in Y}\phi(x, y)$ and $\Psi(x)=\max_{z\in Z}\psi(x, z)$ are weakly convex functions, and $\phi(x, y), \psi(x, z)$ are strongly concave functions in terms of $y$ and $z$, respectively. It covers two families of problems that have been studied but are missing single-loop stochastic algorithms, i.e., difference of weakly convex functions and weakly convex strongly-concave min-max problems. We propose a stochastic Moreau envelope approximate gradient method dubbed SMAG, the first single-loop algorithm for solving these problems, and provide a state-of-the-art non-asymptotic convergence rate. The key idea of the design is to compute an approximate gradient of the Moreau envelopes of $\Phi, \Psi$ using only one step of stochastic gradient update of the primal and dual variables. Empirically, we conduct experiments on positive-unlabeled (PU) learning and partial area under ROC curve (pAUC) optimization with an adversarial fairness regularizer to validate the effectiveness of our proposed algorithms.
Abstract:The temperature parameter plays a profound role during training and/or inference with large foundation models (LFMs) such as large language models (LLMs) and CLIP models. Particularly, it adjusts the logits in the softmax function in LLMs, which is crucial for next token generation, and it scales the similarities in the contrastive loss for training CLIP models. A significant question remains: Is it viable to learn a neural network to predict a personalized temperature of any input data for enhancing LFMs"? In this paper, we present a principled framework for learning a small yet generalizable temperature prediction network (TempNet) to improve LFMs. Our solution is composed of a novel learning framework with a robust loss underpinned by constrained distributionally robust optimization (DRO), and a properly designed TempNet with theoretical inspiration. TempNet can be trained together with a large foundation model from scratch or learned separately given a pretrained foundation model. It is not only useful for predicting personalized temperature to promote the training of LFMs but also generalizable and transferable to new tasks. Our experiments on LLMs and CLIP models demonstrate that TempNet greatly improves the performance of existing solutions or models, e.g. Table 1. The code to reproduce the experimental results in this paper can be found at https://github.com/zhqiu/TempNet.
Abstract:Within the intensive care unit (ICU), a wealth of patient data, including clinical measurements and clinical notes, is readily available. This data is a valuable resource for comprehending patient health and informing medical decisions, but it also contains many challenges in analysis. Deep learning models show promise in extracting meaningful patterns, but they require extensive labeled data, a challenge in critical care. To address this, we propose a novel approach employing self-supervised pretraining, focusing on the alignment of clinical measurements and notes. Our approach combines contrastive and masked token prediction tasks during pretraining. Semi-supervised experiments on the MIMIC-III dataset demonstrate the effectiveness of our self-supervised pretraining. In downstream tasks, including in-hospital mortality prediction and phenotyping, our pretrained model outperforms baselines in settings where only a fraction of the data is labeled, emphasizing its ability to enhance ICU data analysis. Notably, our method excels in situations where very few labels are available, as evidenced by an increase in the AUC-ROC for in-hospital mortality by 0.17 and in AUC-PR for phenotyping by 0.1 when only 1% of labels are accessible. This work advances self-supervised learning in the healthcare domain, optimizing clinical insights from abundant yet challenging ICU data.
Abstract:This paper revisits a class of convex Finite-Sum Coupled Compositional Stochastic Optimization (cFCCO) problems with many applications, including group distributionally robust optimization (GDRO), reinforcement learning, and learning to rank. To better solve these problems, we introduce a unified family of efficient single-loop primal-dual block-coordinate proximal algorithms, dubbed ALEXR. This algorithm leverages block-coordinate stochastic mirror ascent updates for the dual variable and stochastic proximal gradient descent updates for the primal variable. We establish the convergence rates of ALEXR in both convex and strongly convex cases under smoothness and non-smoothness conditions of involved functions, which not only improve the best rates in previous works on smooth cFCCO problems but also expand the realm of cFCCO for solving more challenging non-smooth problems such as the dual form of GDRO. Finally, we present lower complexity bounds to demonstrate that the convergence rates of ALEXR are optimal among first-order block-coordinate stochastic algorithms for the considered class of cFCCO problems.
Abstract:While deep AUC maximization (DAM) has shown remarkable success on imbalanced medical tasks, e.g., chest X-rays classification and skin lesions classification, it could suffer from severe overfitting when applied to small datasets due to its aggressive nature of pushing prediction scores of positive data away from that of negative data. This paper studies how to improve generalization of DAM by mixup data augmentation -- an approach that is widely used for improving generalization of the cross-entropy loss based deep learning methods. %For overfitting issues arising from limited data, the common approach is to employ mixup data augmentation to boost the models' generalization performance by enriching the training data. However, AUC is defined over positive and negative pairs, which makes it challenging to incorporate mixup data augmentation into DAM algorithms. To tackle this challenge, we employ the AUC margin loss and incorporate soft labels into the formulation to effectively learn from data generated by mixup augmentation, which is referred to as the AUC-mixup loss. Our experimental results demonstrate the effectiveness of the proposed AUC-mixup methods on imbalanced benchmark and medical image datasets compared to standard DAM training methods.