The most common type of lung cancer, lung adenocarcinoma (LUAD), has been increasingly detected since the advent of low-dose computed tomography screening technology. In clinical practice, pre-invasive LUAD (Pre-IAs) should only require regular follow-up care, while invasive LUAD (IAs) should receive immediate treatment with appropriate lung cancer resection, based on the cancer subtype. However, prior research on diagnosing LUAD has mainly focused on classifying Pre-IAs/IAs, as techniques for distinguishing different subtypes of IAs have been lacking. In this study, we proposed a multi-head attentional feature fusion (MHA-FF) model for not only distinguishing IAs from Pre-IAs, but also for distinguishing the different subtypes of IAs. To predict the subtype of each nodule accurately, we leveraged both radiomics and deep features extracted from computed tomography images. Furthermore, those features were aggregated through an adaptive fusion module that can learn attention-based discriminative features. The utility of our proposed method is demonstrated here by means of real-world data collected from a multi-center cohort.
For text-to-video retrieval (T2VR), which aims to retrieve unlabeled videos by ad-hoc textual queries, CLIP-based methods are dominating. Compared to CLIP4Clip which is efficient and compact, the state-of-the-art models tend to compute video-text similarity by fine-grained cross-modal feature interaction and matching, putting their scalability for large-scale T2VR into doubt. For efficient T2VR, we propose TeachCLIP with multi-grained teaching to let a CLIP4Clip based student network learn from more advanced yet computationally heavy models such as X-CLIP, TS2-Net and X-Pool . To improve the student's learning capability, we add an Attentional frame-Feature Aggregation (AFA) block, which by design adds no extra storage/computation overhead at the retrieval stage. While attentive weights produced by AFA are commonly used for combining frame-level features, we propose a novel use of the weights to let them imitate frame-text relevance estimated by the teacher network. As such, AFA provides a fine-grained learning (teaching) channel for the student (teacher). Extensive experiments on multiple public datasets justify the viability of the proposed method.
This paper addresses the emerging task of recognizing multiple retinal diseases from wide-field (WF) and ultra-wide-field (UWF) fundus images. For an effective reuse of existing labeled color fundus photo (CFP) data, we propose Cross-domain Collaborative Learning (CdCL). Inspired by the success of fixed-ratio based mixup in unsupervised domain adaptation, we re-purpose this strategy for the current task. Due to the intrinsic disparity between the field-of-view of CFP and WF/UWF images, a scale bias naturally exists in a mixup sample that the anatomic structure from a CFP image will be considerably larger than its WF/UWF counterpart. The CdCL method resolves the issue by Scale-bias Correction, which employs Transformers for producing scale-invariant features. As demonstrated by extensive experiments on multiple datasets covering both WF and UWF images, the proposed method compares favorably against a number of competitive baselines.
We summarize our TRECVID 2022 Ad-hoc Video Search (AVS) experiments. Our solution is built with two new techniques, namely Lightweight Attentional Feature Fusion (LAFF) for combining diverse visual / textual features and Bidirectional Negation Learning (BNL) for addressing queries that contain negation cues. In particular, LAFF performs feature fusion at both early and late stages and at both text and video ends to exploit diverse (off-the-shelf) features. Compared to multi-head self attention, LAFF is much more compact yet more effective. Its attentional weights can also be used for selecting fewer features, with the retrieval performance mostly preserved. BNL trains a negation-aware video retrieval model by minimizing a bidirectionally constrained loss per triplet, where a triplet consists of a given training video, its original description and a partially negated description. For video feature extraction, we use pre-trained CLIP, BLIP, BEiT, ResNeXt-101 and irCSN. As for text features, we adopt bag-of-words, word2vec, CLIP and BLIP. Our training data consists of MSR-VTT, TGIF and VATEX that were used in our previous participation. In addition, we automatically caption the V3C1 collection for pre-training. The 2022 edition of the TRECVID benchmark has again been a fruitful participation for the RUCMM team. Our best run, with an infAP of 0.262, is ranked at the second place teamwise.
Current methods for text-to-video retrieval (T2VR) are trained and tested on video-captioning oriented datasets such as MSVD, MSR-VTT and VATEX. A key property of these datasets is that videos are assumed to be temporally pre-trimmed with short duration, whilst the provided captions well describe the gist of the video content. Consequently, for a given paired video and caption, the video is supposed to be fully relevant to the caption. In reality, however, as queries are not known a priori, pre-trimmed video clips may not contain sufficient content to fully meet the query. This suggests a gap between the literature and the real world. To fill the gap, we propose in this paper a novel T2VR subtask termed Partially Relevant Video Retrieval (PRVR). An untrimmed video is considered to be partially relevant w.r.t. a given textual query if it contains a moment relevant to the query. PRVR aims to retrieve such partially relevant videos from a large collection of untrimmed videos. PRVR differs from single video moment retrieval and video corpus moment retrieval, as the latter two are to retrieve moments rather than untrimmed videos. We formulate PRVR as a multiple instance learning (MIL) problem, where a video is simultaneously viewed as a bag of video clips and a bag of video frames. Clips and frames represent video content at different time scales. We propose a Multi-Scale Similarity Learning (MS-SL) network that jointly learns clip-scale and frame-scale similarities for PRVR. Extensive experiments on three datasets (TVR, ActivityNet Captions, and Charades-STA) demonstrate the viability of the proposed method. We also show that our method can be used for improving video corpus moment retrieval.
For retinal image matching (RIM), we propose SuperRetina, the first end-to-end method with jointly trainable keypoint detector and descriptor. SuperRetina is trained in a novel semi-supervised manner. A small set of (nearly 100) images are incompletely labeled and used to supervise the network to detect keypoints on the vascular tree. To attack the incompleteness of manual labeling, we propose Progressive Keypoint Expansion to enrich the keypoint labels at each training epoch. By utilizing a keypoint-based improved triplet loss as its description loss, SuperRetina produces highly discriminative descriptors at full input image size. Extensive experiments on multiple real-world datasets justify the viability of SuperRetina. Even with manual labeling replaced by auto labeling and thus making the training process fully manual-annotation free, SuperRetina compares favorably against a number of strong baselines for two RIM tasks, i.e. image registration and identity verification. SuperRetina will be open source.
Negation is a common linguistic skill that allows human to express what we do NOT want. Naturally, one might expect video retrieval to support natural-language queries with negation, e.g., finding shots of kids sitting on the floor and not playing with the dog. However, the state-of-the-art deep learning based video retrieval models lack such ability, as they are typically trained on video description datasets such as MSR-VTT and VATEX that lack negated descriptions. Their retrieved results basically ignore the negator in the sample query, incorrectly returning videos showing kids playing with the dog. In this paper, we present the first study on learning to understand negation in video retrieval and make contributions as follows. First, by re-purposing two existing datasets, i.e. MSR-VTT and VATEX, we propose a new evaluation protocol for testing video retrieval with negation. Second, we propose a learning based method for training a negation-aware video retrieval model. The key idea is to first construct a soft negative caption for a specific training video by partially negating its original caption, and then compute a bidirectionally constrained loss on the triplet. This auxiliary loss is then weightedly added to a standard retrieval loss. Experiments on the re-purposed benchmarks show that re-training the CLIP (Contrastive Language-Image Pre-Training) model by the proposed method clearly improves its ability to handle queries with negation. In addition, its performance on the original benchmarks is also improved. Data and source code will be released.
Over 300 million people worldwide are affected by various retinal diseases. By noninvasive Optical Coherence Tomography (OCT) scans, a number of abnormal structural changes in the retina, namely retinal lesions, can be identified. Automated lesion localization in OCT is thus important for detecting retinal diseases at their early stage. To conquer the lack of manual annotation for deep supervised learning, this paper presents a first study on utilizing semi-supervised object detection (SSOD) for lesion localization in OCT images. To that end, we develop a taxonomy to provide a unified and structured viewpoint of the current SSOD methods, and consequently identify key modules in these methods. To evaluate the influence of these modules in the new task, we build OCT-SS, a new dataset consisting of over 1k expert-labeled OCT B-scan images and over 13k unlabeled B-scans. Extensive experiments on OCT-SS identify Unbiased Teacher (UnT) as the best current SSOD method for lesion localization. Moreover, we improve over this strong baseline, with mAP increased from 49.34 to 50.86.
Unsupervised Domain Adaptation (UDA) is known to trade a model's performance on a source domain for improving its performance on a target domain. To resolve the issue, Unsupervised Domain Expansion (UDE) has been proposed recently to adapt the model for the target domain as UDA does, and in the meantime maintain its performance on the source domain. For both UDA and UDE, a model tailored to a given domain, let it be the source or the target domain, is assumed to well handle samples from the given domain. We question the assumption by reporting the existence of cross-domain visual ambiguity: Due to the lack of a crystally clear boundary between the two domains, samples from one domain can be visually close to the other domain. We exploit this finding and accordingly propose in this paper Co-Teaching (CT) that consists of knowledge distillation based CT (kdCT) and mixup based CT (miCT). Specifically, kdCT transfers knowledge from a leader-teacher network and an assistant-teacher network to a student network, so the cross-domain visual ambiguity will be better handled by the student. Meanwhile, miCT further enhances the generalization ability of the student. Comprehensive experiments on two image-classification benchmarks and two driving-scene-segmentation benchmarks justify the viability of the proposed method.
The daily practice of sharing images on social media raises a severe issue about privacy leakage. To address the issue, privacy-leaking image detection is studied recently, with the goal to automatically identify images that may leak privacy. Recent advance on this task benefits from focusing on crucial objects via pretrained object detectors and modeling their correlation. However, these methods have two limitations: 1) they neglect other important elements like scenes, textures, and objects beyond the capacity of pretrained object detectors; 2) the correlation among objects is fixed, but a fixed correlation is not appropriate for all the images. To overcome the limitations, we propose the Dynamic Region-Aware Graph Convolutional Network (DRAG) that dynamically finds out crucial regions including objects and other important elements, and models their correlation adaptively for each input image. To find out crucial regions, we cluster spatially-correlated feature channels into several region-aware feature maps. Further, we dynamically model the correlation with the self-attention mechanism and explore the interaction among the regions with a graph convolutional network. The DRAG achieved an accuracy of 87% on the largest dataset for privacy-leaking image detection, which is 10 percentage points higher than the state of the art. The further case study demonstrates that it found out crucial regions containing not only objects but other important elements like textures.