Abstract:Encrypted traffic classification is highly challenging in network security due to the need for extracting robust features from content-agnostic traffic data. Existing approaches face critical issues: (i) Distribution drift, caused by reliance on the closedworld assumption, limits adaptability to realworld, shifting patterns; (ii) Dependence on labeled data restricts applicability where such data is scarce or unavailable. Large language models (LLMs) have demonstrated remarkable potential in offering generalizable solutions across a wide range of tasks, achieving notable success in various specialized fields. However, their effectiveness in traffic analysis remains constrained by challenges in adapting to the unique requirements of the traffic domain. In this paper, we introduce a novel traffic representation model named Encrypted Traffic Out-of-Distribution Instruction Tuning with LLM (ETooL), which integrates LLMs with knowledge of traffic structures through a self-supervised instruction tuning paradigm. This framework establishes connections between textual information and traffic interactions. ETooL demonstrates more robust classification performance and superior generalization in both supervised and zero-shot traffic classification tasks. Notably, it achieves significant improvements in F1 scores: APP53 (I.I.D.) to 93.19%(6.62%) and 92.11%(4.19%), APP53 (O.O.D.) to 74.88%(18.17%) and 72.13%(15.15%), and ISCX-Botnet (O.O.D.) to 95.03%(9.16%) and 81.95%(12.08%). Additionally, we construct NETD, a traffic dataset designed to support dynamic distributional shifts, and use it to validate ETooL's effectiveness under varying distributional conditions. Furthermore, we evaluate the efficiency gains achieved through ETooL's instruction tuning approach.
Abstract:The rapid advancement of native multi-modal models and omni-models, exemplified by GPT-4o, Gemini, and o3, with their capability to process and generate content across modalities such as text and images, marks a significant milestone in the evolution of intelligence. Systematic evaluation of their multi-modal output capabilities in visual thinking processes (also known as multi-modal chain of thought, M-CoT) becomes critically important. However, existing benchmarks for evaluating multi-modal models primarily focus on assessing multi-modal inputs and text-only reasoning while neglecting the importance of reasoning through multi-modal outputs. In this paper, we present a benchmark, dubbed RBench-V, designed to assess models' vision-indispensable reasoning abilities. To construct RBench-V, we carefully hand-pick 803 questions covering math, physics, counting, and games. Unlike previous benchmarks that typically specify certain input modalities, RBench-V presents problems centered on multi-modal outputs, which require image manipulation such as generating novel images and constructing auxiliary lines to support the reasoning process. We evaluate numerous open- and closed-source models on RBench-V, including o3, Gemini 2.5 Pro, Qwen2.5-VL, etc. Even the best-performing model, o3, achieves only 25.8% accuracy on RBench-V, far below the human score of 82.3%, highlighting that current models struggle to leverage multi-modal reasoning. Data and code are available at https://evalmodels.github.io/rbenchv
Abstract:Machine learning (ML) powered network traffic analysis has been widely used for the purpose of threat detection. Unfortunately, their generalization across different tasks and unseen data is very limited. Large language models (LLMs), known for their strong generalization capabilities, have shown promising performance in various domains. However, their application to the traffic analysis domain is limited due to significantly different characteristics of network traffic. To address the issue, in this paper, we propose TrafficLLM, which introduces a dual-stage fine-tuning framework to learn generic traffic representation from heterogeneous raw traffic data. The framework uses traffic-domain tokenization, dual-stage tuning pipeline, and extensible adaptation to help LLM release generalization ability on dynamic traffic analysis tasks, such that it enables traffic detection and traffic generation across a wide range of downstream tasks. We evaluate TrafficLLM across 10 distinct scenarios and 229 types of traffic. TrafficLLM achieves F1-scores of 0.9875 and 0.9483, with up to 80.12% and 33.92% better performance than existing detection and generation methods. It also shows strong generalization on unseen traffic with an 18.6% performance improvement. We further evaluate TrafficLLM in real-world scenarios. The results confirm that TrafficLLM is easy to scale and achieves accurate detection performance on enterprise traffic.
Abstract:Encrypted traffic classification requires discriminative and robust traffic representation captured from content-invisible and imbalanced traffic data for accurate classification, which is challenging but indispensable to achieve network security and network management. The major limitation of existing solutions is that they highly rely on the deep features, which are overly dependent on data size and hard to generalize on unseen data. How to leverage the open-domain unlabeled traffic data to learn representation with strong generalization ability remains a key challenge. In this paper,we propose a new traffic representation model called Encrypted Traffic Bidirectional Encoder Representations from Transformer (ET-BERT), which pre-trains deep contextualized datagram-level representation from large-scale unlabeled data. The pre-trained model can be fine-tuned on a small number of task-specific labeled data and achieves state-of-the-art performance across five encrypted traffic classification tasks, remarkably pushing the F1 of ISCX-Tor to 99.2% (4.4% absolute improvement), ISCX-VPN-Service to 98.9% (5.2% absolute improvement), Cross-Platform (Android) to 92.5% (5.4% absolute improvement), CSTNET-TLS 1.3 to 97.4% (10.0% absolute improvement). Notably, we provide explanation of the empirically powerful pre-training model by analyzing the randomness of ciphers. It gives us insights in understanding the boundary of classification ability over encrypted traffic. The code is available at: https://github.com/linwhitehat/ET-BERT.